
ploomber
Release 0.23.1

ploomber

Nov 29, 2023

CONTENTS

1 Sections 3

2 Index 5
2.1 Get Started . 5
2.2 Use Cases . 23
2.3 User Guide . 26
2.4 Deployment . 106
2.5 Cookbook . 110
2.6 API Reference . 125
2.7 Related projects . 237
2.8 Community . 238

Index 243

i

ii

ploomber, Release 0.23.1

New to Ploomber? Start here:

CONTENTS 1

ploomber, Release 0.23.1

2 CONTENTS

CHAPTER

ONE

SECTIONS

Get Started High-level tutorials covering the basics of Ploomber.
Use Cases High-level descriptions of what you can build with Ploomber.
User Guide In-depth tutorials for developing Ploomber pipelines.
Deployment In-depth tutorials for deployment.
Cookbook Quick reference for common patterns.
API Reference Technical documentation.
Community General information about our community and the project.

3

ploomber, Release 0.23.1

4 Chapter 1. Sections

CHAPTER

TWO

INDEX

2.1 Get Started

2.1.1 What is Ploomber?

Ploomber is a framework to build collaborative and modular pipelines; it integrates with Jupyter but you can use it with
any other editor.

Ploomber eliminates the notebook refactoring problem: data teams prototype their work in Jupyter notebooks and then
refactor the code for deployment. Such refactoring process comes with a high risk, since it steeply increases the chance
of breaking the analysis when moving the code around, and slows down progress.

With Ploomber, you can develop maintainable, collaborative, and production-ready pipelines from day one.

5

ploomber, Release 0.23.1

Tell me more

• Watch this 6-minute video to see how the experience looks like.

• Read about common use cases.

• Check out the Videos section to watch some of our presentations.

• Read our guest blog post in the official Jupyter blog to learn more about our mission.

I have questions

• Join our community.

• Send us an email (contact@ploomber.io).

• Open an issue on GitHub.

6 Chapter 2. Index

https://ploomber.io/images/doc/what-is-ploomber.png
https://youtu.be/homtENcUd14
../videos.html
https://blog.jupyter.org/ploomber-maintainable-and-collaborative-pipelines-in-jupyter-acb3ad2101a7
https://ploomber.io/community
mailto:contact@ploomber.io
https://github.com/ploomber/ploomber/issues/new

ploomber, Release 0.23.1

I’m ready to start building!

• Head over to our first tutorial for a short walkthrough to run your first Ploomber pipeline.

• Check out our Downloading templates guide to run some pre-configured examples.

2.1.2 Quickstart

pip

pip install ploomber

conda

conda install ploomber -c conda-forge

What’s next?

• Bring your own code! Check out the tutorial to migrate your code into Ploomber: Refactoring legacy notebooks.

• Check the introductory tutorial: Your first Python pipeline.

• Run more examples.

To run this locally, install Ploomber and execute: ploomber examples -n guides/first-pipeline

Found an issue? Let us know.

Questions? Ask us on Slack.

2.1.3 Your first Python pipeline

Introductory tutorial to learn the basics of Ploomber.

Introduction

Ploomber helps you build modular pipelines. A pipeline (or DAG) is a group of tasks with a particular execution order,
where subsequent (or downstream tasks) use previous (or upstream) tasks as inputs.

Pipeline declaration

This example pipeline contains five tasks, 1-get.py, 2-profile-raw.py, 3-clean.py, 4-profile-clean.py and
5-plot.py; we declare them in a pipeline.yaml file:

Content of pipeline.yaml
tasks:

source is the code you want to execute (.ipynb also supported)
- source: 1-get.py

(continues on next page)

2.1. Get Started 7

https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/first-pipeline%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/first-pipeline%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

(continued from previous page)

products are task's outputs
product:
scripts generate executed notebooks as outputs
nb: output/1-get.html
you can define as many outputs as you want
data: output/raw_data.csv

- source: 2-profile-raw.py
product: output/2-profile-raw.html

- source: 3-clean.py
product:
nb: output/3-clean.html
data: output/clean_data.parquet

- source: 4-profile-clean.py
product: output/4-profile-clean.html

- source: 5-plot.py
product: output/5-plot.html

Note: YAML is a human-readable text format similar to JSON.

Note: Ploomber supports Python scripts, Python functions, Jupyter notebooks, R scripts, and SQL scripts.

Opening .py files as notebooks

Ploomber integrates with Jupyter. Among other things, it allows you to open ``.py`` files as notebooks (via jupytext).

What sets the execution order?

Ploomber infers the pipeline structure from your code. For example, to clean the data, we must get it first; hence, we
declare the following in 3-clean.py:

3-clean.py

this tells Ploomber to execute the '1-get' task before '3-clean'
upstream = ['1-get']

8 Chapter 2. Index

ploomber, Release 0.23.1

Plotting the pipeline

[1]: %%bash
ploomber plot

Loading pipeline...
Plot saved at: pipeline.png

100%|| 5/5 [00:00<00:00, 15477.14it/s]

[2]: from IPython.display import Image
Image(filename='pipeline.png')

[2]:

You can see that our pipeline has a defined execution order.

Note: This is a sample predefined five-task pipeline, Ploomber can manage arbitrarily complex pipelines and depen-
dencies among tasks.

Running the pipeline

[3]: %%bash
takes a few seconds to finish
ploomber build

Loading pipeline...
name Ran? Elapsed (s) Percentage
--------------- ------ ------------- ------------
3-clean True 5.43922 28.676
4-profile-clean True 4.76502 25.1215
5-plot True 8.76362 46.2025
1-get False 0 0
2-profile-raw False 0 0

Building task '3-clean': 0%| | 0/3 [00:00<?, ?it/s]
Executing: 0%| | 0/9 [00:00<?, ?cell/s]
Executing: 11%| | 1/9 [00:01<00:11, 1.46s/cell]
Executing: 100%|| 9/9 [00:05<00:00, 1.79cell/s]
Building task '4-profile-clean': 33%| | 1/3 [00:05<00:10, 5.44s/it]
Executing: 0%| | 0/7 [00:00<?, ?cell/s]
Executing: 14%| | 1/7 [00:01<00:06, 1.04s/cell]
Executing: 43%| | 3/7 [00:02<00:03, 1.25cell/s]
Executing: 71%| | 5/7 [00:03<00:01, 1.58cell/s]
Executing: 86%| | 6/7 [00:03<00:00, 1.87cell/s]
Executing: 100%|| 7/7 [00:04<00:00, 1.59cell/s]

(continues on next page)

2.1. Get Started 9

ploomber, Release 0.23.1

(continued from previous page)

Building task '5-plot': 67%| | 2/3 [00:10<00:05, 5.04s/it]
Executing: 0%| | 0/8 [00:00<?, ?cell/s]
Executing: 12%| | 1/8 [00:02<00:17, 2.46s/cell]
Executing: 62%| | 5/8 [00:02<00:01, 2.18cell/s]
Executing: 75%| | 6/8 [00:05<00:01, 1.04cell/s]
Executing: 100%|| 8/8 [00:08<00:00, 1.05s/cell]
Building task '5-plot': 100%|| 3/3 [00:18<00:00, 6.32s/it]

This pipeline saves all the output in the output/ directory; we have the output notebooks and data files:

[4]: %%bash
ls output

1-get.html
2-profile-raw.html
3-clean.html
4-profile-clean.html
5-plot.html
clean_data.parquet
raw_data.csv

Updating the pipeline

Ploomber automatically caches your pipeline’s previous results and only runs tasks that changed since your last execu-
tion.

Execute the following to modify the 3-clean.py script

[5]: from pathlib import Path

path = Path('3-clean.py')
clean = path.read_text()

add a print statement at the end of 3-clean.py
path.write_text(clean + """
print("hello")
""")

[5]: 397

Execute the pipeline again:

[6]: %%bash
takes a few seconds to finish
ploomber build

Loading pipeline...
name Ran? Elapsed (s) Percentage
--------------- ------ ------------- ------------
3-clean True 2.22814 14.2248
4-profile-clean True 4.7084 30.0591
5-plot True 8.72726 55.7161
1-get False 0 0
2-profile-raw False 0 0

10 Chapter 2. Index

ploomber, Release 0.23.1

Building task '3-clean': 0%| | 0/3 [00:00<?, ?it/s]
Executing: 0%| | 0/9 [00:00<?, ?cell/s]
Executing: 11%| | 1/9 [00:01<00:10, 1.29s/cell]
Executing: 100%|| 9/9 [00:01<00:00, 5.04cell/s]
Building task '4-profile-clean': 33%| | 1/3 [00:02<00:04, 2.23s/it]
Executing: 0%| | 0/7 [00:00<?, ?cell/s]
Executing: 14%| | 1/7 [00:00<00:05, 1.10cell/s]
Executing: 43%| | 3/7 [00:02<00:03, 1.23cell/s]
Executing: 71%| | 5/7 [00:03<00:01, 1.58cell/s]
Executing: 86%| | 6/7 [00:03<00:00, 1.91cell/s]
Executing: 100%|| 7/7 [00:04<00:00, 1.60cell/s]
Building task '5-plot': 67%| | 2/3 [00:06<00:03, 3.69s/it]
Executing: 0%| | 0/8 [00:00<?, ?cell/s]
Executing: 12%| | 1/8 [00:02<00:16, 2.39s/cell]
Executing: 62%| | 5/8 [00:02<00:01, 2.24cell/s]
Executing: 75%| | 6/8 [00:05<00:01, 1.03cell/s]
Executing: 100%|| 8/8 [00:08<00:00, 1.05s/cell]
Building task '5-plot': 100%|| 3/3 [00:15<00:00, 5.22s/it]

[7]: # restore contents
path.write_text(clean)

[7]: 381

You’ll see that 1-get.py & 2-profile-raw.py didn’t run because it was not affected by the change!

Where to go from here

Bring your own code! Check out the tutorial to migrate your code to Ploomber.

Have questions? Ask us anything on Slack.

Want to dig deeper into Ploomber’s core concepts? Check out the basic concepts tutorial.

Want to start a new project quickly? Check out how to get examples.

2.1.4 Basic concepts

This guide explains Ploomber’s core concepts.

Ploomber allows you to quickly turn a collection of scripts, notebooks, or functions into a data pipeline by following
three conventions:

1. Each task is a function, script or notebook.

2. Tasks declare their dependencies using an upstream variable.

3. Tasks declare their outputs using a product variable.

2.1. Get Started 11

https://docs.ploomber.io/en/latest/user-guide/refactoring.html
https://ploomber.io/community/
https://docs.ploomber.io/en/latest/get-started/basic-concepts.html
https://docs.ploomber.io/en/latest/user-guide/templates.html

ploomber, Release 0.23.1

A simple pipeline

Let’s say we want to build a pipeline to plot some data. Instead of coding everything in a single file, we’ll break down
logic in three steps, which will make our code more maintainable and easier to test:

Note: A pipeline is also known as a directed acyclic graph (or DAG). We use both of these terms interchangeably.

In a Ploomber pipeline, outputs (also known as products) from one task become inputs of “downstream” tasks. Hence,
“upstream” dependencies read from left to right. For example, raw is an “upstream” dependency of clean.

An “upstream” dependency implies that a given task uses its upstream products as inputs. Following the pipeline
example, clean uses raw’s products, and plot uses clean’s products.

Ploomber supports three types of tasks:

1. Python functions (also known as callables)

2. Python scripts/notebooks (and their R equivalents)

3. SQL scripts

You can mix any combination of tasks in your pipeline. For example, you can dump data with a SQL query, then plot
it with Python.

Defining a pipeline

To execute a pipeline, Ploomber needs to know the location of the task’s source code (source key), and the location
of the task’s products (product key). You can do this via a pipeline.yaml file:

tasks:
this is a sql script task
- source: raw.sql
product: [schema, name, table]
...

this is a function task
"my_functions.clean" is equivalent to: from my_functions import clean
- source: my_functions.clean
product: output/clean.csv

this is a script task (notebooks work the same)
- source: plot.py
product:
scripts always generate a notebook (more on this in the next section)
nb: output/plots.ipynb

Note: You can set a task name using name. If not present, Ploomber infers it from the source value by removing the
extension to the file’s name.

Once you have a pipeline.yaml file, you can run it with:

ploomber build

12 Chapter 2. Index

ploomber, Release 0.23.1

Ploomber keeps track of source changes to skip up-to-date tasks. If you run ploomber build again, only tasks whose
source code has changed are executed. This helps iterate faster, as changes to the pipeline only trigger the least number
of tasks.

Tip: You can use the resources_ section in a task definition to tell Ploomber to track the content of other files. Click
here to learn more.

For a full reference on pipeline.yaml files see: Spec API (pipeline.yaml).

Let’s now see how to use scripts and notebooks as pipeline tasks.

Tasks: scripts/notebooks

Jupyter notebooks files (.ipynb) contain both code and output; while convenient, keeping code and outputs in the
same file makes version control (i.e., git) difficult.

Our recommended approach is to use scripts as sources. However, thanks to the integration with Jupyter, you can open
scripts as notebooks. The following image shows a side-by-side comparison of the same source code as .py (script)
and as a .ipynb (notebook) file:

Note that the .py script has some # %% comments. Such markers allow us to delimit code cells and render the .py file
as a notebook.

Note: The # %% is one way of representing .py as notebooks. Ploomber uses jupytext to perform the conversion,
other formats such as the “light” (# +) format work too. Editors such as VS Code, Spyder, and PyCharm support the
“percent” format.

To keep the benefits of the .ipynb format, Ploomber creates a copy of your scripts, converts them to .ipynb at
runtime and executes them. This is a crucial concept: scripts are part of your project’s source code, but executed
notebooks are pipeline products.

Note: Even though we recommend the use of .py files, you can still use regular .ipynb files as sources if you prefer
so.

To know more about integration with Jupyter notebooks, see the Jupyter integration guide.

R scripts/notebooks are supported as well.

2.1. Get Started 13

/_static/img/basics/py-and-ipynb.png

ploomber, Release 0.23.1

upstream and product

To specify task dependencies, include a special parameters cell in your script/notebook. Following the example
pipeline, clean has raw as an upstream dependency as the raw task is an input to the clean task. We establish this
relation by declaring an upstream variable with a list of task names that should execute before the file we’re editing.
If a script/notebook has no dependencies, set upstream = None.

%% tags=["parameters"]
upstream = ['raw'] # this means: execute raw.py, then clean.py
product = None

Important: product = None is a placeholder. It states that our script takes an input parameter called product, but
the actual value is automatically replaced at runtime, we explain this in the upcoming section.

Note: the # %% markers only apply to scripts. Click here for information on adding tags to .ipynb files.

The cell injection process

Note: For tips on troubleshooting pipeline loading, see Troubleshooting pipeline loading.

Let’s review the contents of a sample clean.py file:

import pandas as pd

%% tags=["parameters"]
upstream = ['raw']
product = None

%%
df = pd.read_csv(upstream['raw']['data'])
some data cleaning code...

%%
store clean data
df.to_csv(str(product['data']), index=False)

This code will break if we run it: We declared raw as an upstream dependency, but we don’t know where to load our
inputs from, or where to save our outputs.

When executing your pipeline, Ploomber injects a new cell into each script/notebooks, with new product and
upstream variables that replace the original ones by extracting information from the pipeline.yaml:

14 Chapter 2. Index

https://docs.ploomber.io/en/latest/user-guide/faq_index.html#parameterizing-notebooks

ploomber, Release 0.23.1

As you can see in the image, the task in the picture has an upstream dependency called raw. Thus, the injected cell
has a dictionary that gives you the products of raw, which we use as input, and a new product variable that we use to
store our outputs.

The cell injection process also happens when opening the notebook/script in Jupyter. Learn more about Cell injection
and Jupyter integration.

Note: When using jupyter notebook, scripts open automatically as notebooks. If using jupyter lab, you have
to right-click and select the notebook option.

Since scripts/notebooks always create an executed notebook, you must specify where to save such a file. A typical task
declaration looks like this:

tasks:
- source: plot.py
output notebook
product: output/plots.ipynb

If the source script/notebook generates more than one output, create a dictionary under product:

tasks:
- source: plot.py
product:
if the script generates other products, use "nb" for the notebok
nb: output/plots.ipynb
...and any other keys for other files
data: output/data.csv

Note: The name of keys in the product dictionary can be chosen freely so as to be descriptive of the outputs (e.g.
data, data_clean, model, etc.)

To inject cells manually, users can run:

ploomber nb --inject

However, if the same source appears more than once, --inject will pick the first declared task and inject those
parameters.

2.1. Get Started 15

/_static/img/basics/injected.png

ploomber, Release 0.23.1

Here is an example where template.ipynb appears in two different tasks

tasks:
- source: template.ipynb

name: task-a
product: output/template-task-a.ipynb
params:
some_param: param-a

- source: template.ipynb
name: task-a-suffix
product: output/template-task-a-suffix.ipynb
params:
some_param: param-a-suffix

- source: template.ipynb
name: task-b-suffix
product: output/template-task-b-suffix.ipynb
params:
some_param: param-b-suffix

By using the inject-priority parameter in setup.cfg, we can specify which set of parameters to inject:

To inject param-a to task-a :

[ploomber]
entry-point = path/to/pipeline.yaml
inject-priority = task-a

Use wildcards to inject multiple parameters (*)

To inject param-a-suffix to task-a-suffix, and param-b-suffix to task-b-suffix :

[ploomber]
entry-point = path/to/pipeline.yaml
inject-priority = *-suffix

This covers scripts and notebooks as tasks, if you want to learn how to use functions as tasks, keep scrolling, otherwise,
skip to the end.

It is also possible to use placeholders in the pipeline.yaml file. For example, the following file uses a placeholder
some_param.

Content of pipeline.yaml
tasks:
- source: print.py

name: print
product:

nb: 'output/{{some_param}}/notebook.html'
papermill_params:

log_output: True
params:

some_param: '{{some_param}}'

This placeholder should be defined inside the env.yaml file, more on that here.

16 Chapter 2. Index

https://docs.ploomber.io/en/latest/user-guide/parametrized.html#Spec-API-(pipeline.yaml)

ploomber, Release 0.23.1

Tasks: functions

You can also use functions as tasks, the following section explains how.

upstream and product

The only requirement for a function to be a valid task is to have a product parameter.

import pandas as pd

def clean(product):
save output using the product argument
df.to_csv(product)

Note: If the function generates many products, this becomes a dictionary, for example: product['one'], and
product['another'].

If the task has upstream dependencies, add an upstream parameter:

import pandas as pd

def clean(product, upstream):
df_input = pd.read_csv(upstream['task_name'])
df.to_csv(product)

When resolving dependencies, Ploomber will look for references such as upstream['task_name'], then, during
execution, Ploomber will pass the requested inputs. For example, upstream={'task_name': 'path/to/product/
from/upstream.csv'}

This covers scripts and functions as tasks, if you want to learn how to use SQL scripts as tasks, keep scrolling, otherwise,
skip to the end.

Tasks: SQL

SQL tasks require more setup because you have to configure a client to connect to the database. We explain the
product and upstream mechanism here; an upcoming guide describes how to configure database clients.

upstream and product

SQL scripts require placeholders for product and upstream. A script that has no upstream dependencies looks like
this:

CREATE TABLE {{product}} AS -- {{product}} is a placeholder
SELECT * FROM my_table WHERE my_column > 10

In your pipeline.yaml file, specify product with a list of 3 or 2 elements: [schema, name, table] or [name,
table]. If using a view, use [schema, name, view]. For example:

Say you have product: [schema, name, table] in your pipeline.yaml file. The {{product}} placeholder is
replaced by schema.name:

2.1. Get Started 17

ploomber, Release 0.23.1

CREATE TABLE schema.name AS
SELECT * FROM my_table WHERE my_column > 10

If the script has upstream dependencies, use the {{upstream['task_name']}} placeholder:

CREATE TABLE {{product}} AS
SELECT * FROM {{upstream['task_name']}} WHERE my_column > 10

{{upstream['task_name']}} tells Ploomber to run the task with the name 'task_name' and to replace
{{upstream['task_name']}} with the product of such task.

Clients

To establish a connection with a database, you have to configure a client. All databases that have a Python driver are
supported, including systems like Snowflake or Apache Hive. To learn more, see the SQL guide.

Where to go from here

We’ve created many runnable templates to help you get up and running, check out our Downloading templates guide.

If you want to read about advanced features, check out User Guide.

The pipeline.yaml API offers a concise way to declare pipelines, but if you want complete flexibility, you can use
the underlying Python API, Click here to learn more, or click here to see an example.

To run this locally, install Ploomber and execute: ploomber examples -n guides/intro-to-ploomber

Found an issue? Let us know.

Questions? Ask us on Slack.

2.1.5 Intro to Ploomber

Your first Python pipeline

Introductory tutorial to learn the basics of Ploomber.

Ploomber Tutorial Intro

We’ll forcast the relation between testing and active covid-19 cases.

18 Chapter 2. Index

https://github.com/ploomber/projects/blob/master/templates/python-api/src/ploomber_basic/pipeline.py
https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/intro-to-ploomber%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/intro-to-ploomber%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

We’ll see today how you can improve your work:

• Run 100s of notebooks in parallel

• Parameterize your workflows

• Easily generate HTML/PDF reports

For a deeper dive, try the first-pipeline guide or the basic concepts overview. If YAML, Jupyter and notebooks sounds
like a distant cousin, please check our basic concepts guide.

Parallelization

• Ploomber creates a pipeline for you, so you can run independent tasks simultaneously.

• It also cache the results so you don’t have to wait. You can drop the force=True (last line) and rerun this cell.

In here we’ll train 4 different models simultaneously, and see it in a graph:

[1]: from ploomber import DAG
from ploomber.tasks import ShellScript, PythonCallable
from ploomber.products import File
from ploomber.executors import Parallel

from ploomber.spec import DAGSpec
spec = DAGSpec('./pipeline.yaml')
dag = spec.to_dag()
dag.executor = Parallel()
build = dag.build(force=True)

fatal: ref HEAD is not a symbolic ref

0%| | 0/7 [00:00<?, ?it/s]

Executing: 0%| | 0/6 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

Executing: 0%| | 0/8 [00:00<?, ?cell/s]

/home/prem/Documents/projects/ploomber/ploomberw/ploomber/src/ploomber/executors/serial.
→˓py:149: UserWarning:
=========================== DAG build with warnings ============================
- NotebookRunner: linear-regression -> MetaProduct({'nb': File('output/...ession.ipynb')}
→˓) -
- /home/prem/Documents/projects/ploomber/ploomber-projectsw/ploomber-projects/guides/
→˓intro-to-ploomber/tasks/linear-regression.py -
Output '/home/prem/Documents/projects/ploomber/ploomber-projectsw/ploomber-projects/
→˓guides/intro-to-ploomber/output/linear-regression.ipynb' is a notebook file. nbconvert_
→˓export_kwargs {'exclude_input': True} will be ignored since they only apply when␣
→˓exporting the notebook to other formats such as html. You may change the extension to␣
→˓apply the conversion parameters

(continues on next page)

2.1. Get Started 19

https://docs.ploomber.io/en/latest/get-started/first-pipeline.html
https://docs.ploomber.io/en/latest/get-started/basic-concepts.html
https://docs.ploomber.io/en/latest/get-started/basic-concepts.html

ploomber, Release 0.23.1

(continued from previous page)

=============================== Summary (1 task) ===============================
NotebookRunner: linear-regression -> MetaProduct({'nb': File('output/...ession.ipynb')})
=========================== DAG build with warnings ============================

warnings.warn(str(warnings_all))

[2]: dag.plot()

0%| | 0/7 [00:00<?, ?it/s]

[2]:

Parameterize workflows

• In many cases, you’d run your analysis with different parameters/different data slices

• Ploomber allows you to parametrize workflows easily

• Here we’re training a linear regression with different parameters, using a notebook as template

[3]: from ploomber.spec import DAGSpec
spec = DAGSpec('./pipeline-params.yaml')
dag = spec.to_dag()
build = dag.build(force=True)
build
dag.plot()

fatal: ref HEAD is not a symbolic ref

0%| | 0/5 [00:00<?, ?it/s]

Executing: 0%| | 0/6 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

Executing: 0%| | 0/7 [00:00<?, ?cell/s]

0%| | 0/5 [00:00<?, ?it/s]

20 Chapter 2. Index

ploomber, Release 0.23.1

[3]:

Caching optimization

Note that the previous table has load ran as fail?

This task ran in a previous pipeline so there’s no point of reruning it. (we can force it to run if needed).

In the next table, all of the pipeline results were cached so we can focus on code that changed only, saving hours of
compute time.

[4]: build = dag.build()
build

0it [00:00, ?it/s]

[4]: name Ran? Elapsed (s) Percentage
------------------- ------ ------------- ------------
load False 0 0
clean False 0 0
split False 0 0
linear-regression-0 False 0 0
linear-regression-1 False 0 0

Automated reports

In case we have a dataset to track/a stakeholder report, we can generate it as part of our workflow. We created the report
as part of our first cell pipeline build, so we can consume it immediately. Let’s load our stakeholder report from our
previous linear regression task:

[5]: # open each specific html report/data if exist
from IPython.display import IFrame, display
from pathlib import Path

report = "./output/linear-regression.html"
if Path(report).is_file():

display(IFrame(src=report, width='100%', height='500px'))
else:

print("Report doesn't exist - please run the notebook sequentially")

Report doesn't exist - please run the notebook sequentially

2.1. Get Started 21

ploomber, Release 0.23.1

Interactive reporting

Compare your previous experiments interactively

[6]: from sklearn_evaluation import NotebookCollection
ids to identify each experiment
ids = [

'linear-regression', 'polynomial-regression', 'random-forest', 'lasso-regression'
]

output files
files = [f'output/{i}.ipynb' for i in ids]

nbs = NotebookCollection(paths=files, ids=ids)
list(nbs)
nbs['plot']

[6]: <sklearn_evaluation.nb.NotebookCollection.HTMLMapping at 0x7ffa0bfaf040>

Where to go from here

Use cases

• Machine Learning

• Research Projects

• Analytics

• SQL Pipelines

Community support

Have questions? Ask us anything on Slack.

Resources

Bring your own code! Check out the tutorial to migrate your code to Ploomber.

Want to dig deeper into Ploomber’s core concepts? Check out the basic concepts tutorial.

Want to start a new project quickly? Check out how to get examples.

22 Chapter 2. Index

https://docs.ploomber.io/en/latest/use-cases/ml.html
https://docs.ploomber.io/en/latest/use-cases/research.html
https://docs.ploomber.io/en/latest/use-cases/analytics.html
https://docs.ploomber.io/en/latest/use-cases/sql.html
https://ploomber.io/community/
https://docs.ploomber.io/en/latest/user-guide/refactoring.html
https://docs.ploomber.io/en/latest/get-started/basic-concepts.html
https://docs.ploomber.io/en/latest/user-guide/templates.html

ploomber, Release 0.23.1

2.2 Use Cases

2.2.1 Machine Learning

Ploomber has many features specifically tailored to accelerate Machine Learning workflows.

Tip: Check out our sklearn-evaluation library. It contains a large collection of Machine Learning evaluation plots, an
experiment tracker, and many other features!

Data cleaning and feature engineering

Data cleaning and feature engineering are highly iterative processes, Ploomber accelerates them via incremental builds,
which allow you to introduce changes to your pipeline and bring results up-to-date without having to re-compute
everything from scratch.

Experiment tracking

Ploomber also plays nicely with experiment trackers, allowing you to train hundreds of models and track the results.

Instructions

pip install ploomber
ploomber examples -n templates/mlflow -o ploomber-mlflow

Parallel experiments

To help you find the best performing model, Ploomber allows you to parallelize Machine Learning experiments.

pip install ploomber
ploomber examples -n cookbook/grid -o grid

pip install ploomber
ploomber examples -n cookbook/nested-cv -o nested-cv

Large-scale model training

If one machine isn’t enough, you can parallelize training jobs in a cluster by exporting your pipeline to any of our
supported platforms (Kubernetes, Airflow, and AWS Batch).

2.2. Use Cases 23

https://sklearn-evaluation.readthedocs.io/en/latest/
https://github.com/ploomber/projects/tree/master/templates/mlflow

ploomber, Release 0.23.1

Deployment

Once you find the best performing model, you can deploy it for batch processing or as an online API .

2.2.2 Research Projects

Ploomber can help you manage your research project to enhance reproducibility and to run more experiments faster.
Click here to see a sample project.

Faster iterations

Thanks to incremental builds, you can make small changes to your data analysis code and quickly bring your results
up-to-date, since Ploomber will only execute the code that has changed since your last run.

Run (and organize) more experiments

Ploomber allows you to run many experiments in parallel. You can parametrize pipelines to run the same code with
different configurations.

Furthermore, you can quickly generate all the parameter combinations from a grid. If one machine isn’t enough, export
to systems like Kubernetes or SLURM easily.

pip install ploomber
ploomber examples -n cookbook/grid -o grid

Ensure reproducibility

Since Ploomber generates an output notebook (that may include any number of tables or charts) whenever you execute
your pipeline, you can easily bookkeep the results of each experiment. Whenever you make changes, such executed
notebooks from previous runs can help you verify the reproducibility of your results.

Share your analysis

Ploomber can orchestrate all your data analysis for you if you need someone else to run your code, all they have to do
is execute the following command:

ploomber build

2.2.3 Analytics

Ploomber is a fantastic tool for data manipulation and generating analytical reports.

pip install ploomber
ploomber examples -n templates/google-cloud -o google-cloud

pip install ploomber
ploomber examples -n templates/exploratory-analysis -o exploratory-analysis

24 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/templates/exploratory-analysis

ploomber, Release 0.23.1

Modularize your project

Instead of coding everything in a single notebook (which is difficult to maintain and collaborate), you can quickly break
down your analysis into multiple parts.

Faster iterations

Finding data insights is an iterative process, with Ploomber’s incremental builds you can rapidly iterate on your data
since the framework skips redundant computations and only executes tasks whose source code has changed since the
last execution.

Automated report generation

Once your pipeline is ready, you can easily create HTML reports from your scripts/notebooks. Just change the extension
of the task, and Ploomber will automatically convert the output for you.

tasks:
- source: tasks/plot.py
execute your .py file and generate an .html version of it
all tables and charts are included
product: output/report.html

2.2.4 SQL Pipelines

Ploomber comes with built-in support for SQL. You provide SQL scripts and Ploomber manages connections to the
database and orchestrates execution for you.

Tip: Check out our JupySQL library. It allows you to run SQL in a Jupyter notebook: result = %sql SELECT *
FROM table

Process with SQL and Python

With data warehouses such as Snowflake, using SQL for transforming data can significantly simplify the development
process since the warehouse takes care of scaling your code.

You can use Ploomber and SQL to process large datasets quickly, then download the data to continue your analysis
with Python for plotting or training a Machine Learning model

pip install ploomber
ploomber examples -n templates/google-cloud -o google-cloud

pip install ploomber
ploomber examples -n templates/spec-api-sql -o spec-api-sql

2.2. Use Cases 25

https://jupysql.readthedocs.io/en/latest/intro.html

ploomber, Release 0.23.1

Uploading batch predictions to a database

If you’re working on a Machine Learning whose predictions must be uploaded to a database table, you can implement
this with Ploomber.

ETL

Ploomber allows you to write ETL SQL pipelines.

pip install ploomber
ploomber examples -n templates/etl -o etl

2.3 User Guide

2.3.1 Downloading templates

Use our pre-configured templates as a starting point for your projects.

Selected templates

Tip: Click on the template link to see the source code on GitHub. Once there, you’ll see an option to launch a free,
hosted JupyterLab.

• Exploratory Data Analysis
1. Basic EDA example: Load and clean data. Then create HTML reports with visualizations.

(templates/exploratory-analysis)

• Machine Learning
1. Basic ML example: Get data, clean it, and train a model. (templates/ml-basic)

2. Intermediate ML example: Create training and batch serving pipelines. (templates/ml-intermediate)

3. Online API: Deploy pipeline as an API using Flask. (templates/ml-online)

4. Experiment grid + Mlflow: Create a grid of experiments and track them with MLflow. (tem-
plates/mlflow)

• SQL databases
1. Basic SQL example: Process data, dump it, and visualize with Python. (templates/spec-api-sql)

2. ETL: dump data from remote storage, upload it to a database, process it, and visualize it with Python.
(templates/etl)

26 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/templates/exploratory-analysis
https://github.com/ploomber/projects/tree/master/templates/ml-basic
https://github.com/ploomber/projects/tree/master/templates/ml-intermediate
https://github.com/ploomber/projects/tree/master/templates/ml-online
https://github.com/ploomber/projects/tree/master/templates/mlflow
https://github.com/ploomber/projects/tree/master/templates/mlflow
https://github.com/ploomber/projects/tree/master/templates/spec-api-sql
https://github.com/ploomber/projects/tree/master/templates/etl

ploomber, Release 0.23.1

Downloading a template

To download any of the examples:

ploomber examples -n {template} -o {output-directory}

For example, if you want to copy the Basic EDA example to the eda directory in your computer:

ploomber examples -n templates/exploratory-analysis -o eda

Tip: Once you download an example, you can explore it with Jupyter. Check out the Jupyter integration guide to
learn more.

Once the download finishes, you’ll need to install dependencies; you can use the ploomber install command. You
may call conda or pip directly.

Listing all templates

To list all the available examples:

ploomber examples

Note that the command above will display three sections:

1. Templates. Pre-configured projects that you can use as a starting point.

2. Cookbook. Short examples to get something done quickly.

3. Guides. In-depth tutorials covering features in detail.

Note that both Cookbook and Guides are part of the documentation itself, and you can navigate to any of them using
the left sidebar or download them to run them locally.

Templates structure

All templates follow the same structure:

1. README.md: Instructions to run the template.

2. README.ipynb: Same as README.md but in notebook format and with command outputs.

3. environment.yml: conda dependencies file.

4. requirements.txt: pip dependencies file.

Most templates contain a pipeline.yaml file, so you can run ploomber build to execute the pipeline, but there are
a few exceptions. Check out the template’s README.md for specifics.

2.3. User Guide 27

ploomber, Release 0.23.1

Starting projects from scratch

If no template suits your needs, use the ploomber scaffold command to create a clean slate project. Click here to
learn how to scaffold projects.

ploomber scaffold also comes with utilities to modify existing pipelines, so can use it to change any of the templates.

2.3.2 Command-line interface

Note: This is an introductory tutorial to the command line interface; for a complete API description, see: Command
line interface.

Entry points

By default, the CLI looks for an pipeline.yaml file in certain standard locations (Default locations). If your pipeline
exists in a non-standard location, pass the --entry-point argument.

The pipeline.yaml file is known as “entry point”. However, this is not the only type of entry point (See this guide
to learn more: Spec API vs. Python API).

Basic commands

Build pipeline (skips up-to-date tasks):

ploomber build

Forced build (runs all tasks, regardless of status):

ploomber build --force

Generate pipeline plot:

ploomber plot

New in Ploomber 0.18.2: You can plot the pipeline without installing extra dependencies. pygraphviz is still sup-
ported but optional. To learn more, see this.

Interactive sessions

Interactive sessions allow you to access the structure of your pipeline to help you test and debug:

ploomber interact

The command above starts a Python session, parses your pipeline, and exposes a dag variable (an instance of the
ploomber.DAG class).

For example, to generate the plot:

dag.plot()

Get task names:

28 Chapter 2. Index

ploomber, Release 0.23.1

list(dag)

You can also interact with specific tasks:

task = dag['task_name']

Tip: If using IPython or Jupyter, press Tab to get autocompletion when typing the task name: dag['some_task']

Get task’s product:

dag['some_task'].product

If the product is a dictionary:

dag['some_task'].product['product_name']

You can use this to avoid hardcoding paths to load products:

import pandas as pd

df = pd.read_csv(dag['some_task'].product)

If you are working with Python tasks (functions, scripts, or notebooks), you can start a line by line debugging session:

dag['some_task'].debug()

Enter quit to exit the debugging session. Refer to The Python Debugger documentation for details.

To print the source code of a given task:

dag['some_task'].source

To find the source code location of a given task:

dag['some_task'].source.loc

Get upstream dependencies:

dag['some_task'].upstream

Get downstream tasks:

dag.get_downstream('some_task')

Other commands

Some commands didn’t cover here:

• examples: Download examples

• install: Install dependencies

• nb (short for notebook): Manage notebooks and scripts

• report: Generate a pipeline report

• scaffold: Create a new project

2.3. User Guide 29

https://docs.python.org/3/library/pdb.html

ploomber, Release 0.23.1

• status: Pipeline status summary

• task: Execute a single task

See the CLI API documentation Command line interface for a detailed overview of each command.

Enabling Completion

To configure autocompletion for the CLI, you need to configure your shell.

If using bash, add this to ~/bashrc:

eval "$(_PLOOMBER_COMPLETE=zsh_source ploomber)"

If using zsh, add this to ~/.zshrc:

eval "$(_PLOOMBER_COMPLETE=zsh_source ploomber)"

If using fish, add this to ~/.config/fish/completions/ploomber.fish:

eval (env _PLOOMBER_COMPLETE=fish_source ploomber)

2.3.3 Jupyter integration

Note: This guide is applicable if running JupyterLab >=2.x. If running older versions or using other editors (such as
VSCode or PyCharm), check out the Other editors (VSCode, PyCharm, etc.) guide.

Ploomber integrates with Jupyter to make it easy to create multi-stage pipelines composed of small notebooks. Breaking
down logic in multiple steps allows you to develop modularized pipelines that are easier to maintain and deploy.

Before executing scripts or notebooks, Ploomber injects a new cell that replaces the upstream variable at the top of
the notebook (which only contains dependency names) with a dictionary that maps these names to their corresponding
output files to use as inputs in the current task.

For example if a Python script (task.py) declares the following dependency:

upstream = ['another-task']

And another-task has the following product definition:

tasks:
- source: another-task.py
product:
nb: output/another-task.ipynb
data: output/another-task.parquet

The following cell will be injected in task.py before execution:

this is injected automatically
upstream = {'another_task': {'nb': 'output/another-task.ipynb',

'data': 'output/another-task.parquet'}}

30 Chapter 2. Index

ploomber, Release 0.23.1

The cell injection process happens during execution and development, allowing you to develop pipelines interactively.

Note: When using jupyter notebook, scripts automatically render as notebooks. If using jupyter lab:
Right-click -> Open With -> Notebook as depicted below:

Note: If you want to configure JuptyerLab to open .py files as notebooks with a single click, see the corresponding
section.

Important: Task-level and DAG-level hooks are not executed when opening scripts/notebooks in Jupyter.

Interactive development

You can develop entire pipelines without leaving Jupyter. The fastest way to get started is to use the ploomber
scaffold command, which creates a base project, check out the guide to learn more: Scaffolding projects.

Once you have a pipeline.yaml file, you may add new tasks and run ploomber scaffold again to create base
scripts. For example, say you create a pipeline.yaml like this:

tasks:
- source: scripts/get.py
product:
nb: output/get.ipynb
data: output/get.csv

- source: scripts/clean.py
product:
nb: output/clean.ipynb
data: output/clean.csv

- source: scripts/fit.py
product:
nb: output/fit.ipynb
model: output/model.pickle

Once you execute ploomber scaffold, you’ll see the three new scripts under the scripts/ directory. You can then
start adding the relationships between tasks.

2.3. User Guide 31

https://ploomber.io/images/doc/lab-open-with-notebook.png

ploomber, Release 0.23.1

The upstream variable

Let’s say your scripts/clean.py script cleans some raw data. That means you want to use the raw data as in-
put (which is downloaded by scripts/get.py), you can modify the upstream variable to establish this execution
dependency.

ensure we get the data, and then we clean it
upstream = ['get']

To inject the cell, reload the file from disk:

Then, you’ll see something like this:

injected cell
upstream = {'get': 'nb': 'output/clean.ipynb', 'data': 'output/clean.csv'}

Now you can continue developing your cleaning logic without hardcoding any paths. Furthermore, when executing
your pipeline, Ploomber will run scripts/get.py and then scripts/clean.py

Important: Ploomber needs to parse your pipeline.yaml file to inject cells in your scripts/notebooks; if an error
happens during the parsing process, you won’t see any injected cells. Check out the Troubleshooting section below for
details.

32 Chapter 2. Index

https://ploomber.io/images/doc/lab-reload-file.png

ploomber, Release 0.23.1

Choosing the source format

Ploomber supports scripts and notebooks as source formats for tasks. We recommend using .py files, but you can use
the traditional .ipynb format if you prefer so. As long as your file has a tag named parameters, it will work fine
(click here to learn how to add the parameters cell)

The advantage of using .py files is that they’re much easier to manage with git, the disadvantage is that .py only
contain code (not output), so after editing your .py file, you need to run the task to create the executed notebook (the
one you declare as a product of the task).

However, if you want a more ipynb-like experience with .py files, you can use jupytext’s pairing feature to sync the
output of a .py to a .ipynb file.

We rely on Jupytext for the .py to .ipynb conversion so that you can use any of the .py flavors, here are some examples:

Light format

+ tags=["parameters"]
upstream = None
product = None

+
another cell

Percent format

%% tags=["parameters"]
upstream = None
product = None

%%
another cell

Check out Jupytext documentation for more details on the supported formats.

Activating the Jupyter extension

Note: For tips on troubleshooting pipeline loading, see Troubleshooting pipeline loading.

In most cases, the extension configures when you install Ploomber; you can verify this by running:

jupyter serverextension list

If Ploomber appears in the list, it means it’s activated. If it doesn’t show up, you can manually activate it with:

jupyter serverextension enable ploomber

To disable it:

jupyter serverextension disable ploomber

2.3. User Guide 33

https://papermill.readthedocs.io/en/stable/usage-parameterize.html
https://jupytext.readthedocs.io/en/latest/paired-notebooks.html
https://jupytext.readthedocs.io/en/latest/formats-scripts.html

ploomber, Release 0.23.1

Important: If you want to use the extension in a hosted environment (JupyterHub, Domino, SageMaker, etc.), ensure
Ploomber is installed before JupyterLab spins up. Usually, hosted platforms allow you to write a custom start script:
add a pip install ploomber line, and you’ll be ready to go. If you cannot get the extension to work, post a question
in the #ask-anything channel on Slack. Alternatively, you may replicate the extension’s functionality using the
command line, check out the this guide to learn more.

Custom Jupyter pipeline loading

When you start the Jupyter app (via the jupyter notebook/lab command), the extension looks for a pipeline.
yaml file in the current directory and parent directories. If it finds one, it will load the pipeline and inject the appropriate
cell if the existing file is a task in the loaded pipeline.

If your pipeline spec has a different name, you can create a setup.cfg file and indicate what file you want to load.
Note that changing the default affects both the command-line interface and the Jupyter plug-in.

[ploomber]
entry-point = path/to/pipeline.yaml

Note that paths are relative to the parent directory of setup.cfg.

Alternatively, you can set the ENTRY_POINT environment variable. For example, to load a pipeline.serve.yaml:

export ENTRY_POINT=pipeline.serve.yaml
jupyter lab

Important: export ENTRY_POINT must be executed in the same process that spins up JupyterLab. If you change it,
you’ll need to start JupyterLab again

Note that ENTRY_POINT must be a file name and not a path. When you start Jupyter, Ploomber will look for that file in
the current and parent directories until it finds one.

New in version 0.19.6: Support for switching entry point with a setup.cfg file

Troubleshooting pipeline loading

Note: For tips on activating the Jupyter extension, see Activating the Jupyter extension.

If a pipeline is not detected, the Jupyter notebook application will work as expected, but no cell injection will happen.
You can see if Ploomber could not detect a pipeline by looking at the messages displayed after initializing Jupyter (the
terminal window where you executed the jupyter notebook/lab command, you’ll see something like this:

[Ploomber] Skipping DAG initialization since there isn't a project root in the current␣
→˓or parent directories. Error message: {SOME_MESSAGE}

The message above means that Ploomber could not locate a pipeline.yaml file to use for cell injection, take a look
at the entire error message as it will contain more details to help you fix the problem. A common mistake is not to
include a pipeline.yaml file in the same directory (or parent) of the script/notebook you’re editing.

If a pipeline.yaml is found but fails to initialize, the Jupyter console will show another error message:

34 Chapter 2. Index

https://ploomber.io/community

ploomber, Release 0.23.1

[Ploomber] An error occurred when trying to initialize the pipeline.

A common reason for this is an invalid pipeline.yaml file.

Note that even if your pipeline is missing or fails to initialize, Jupyter will start anyway, so ensure to take a look at the
console if you experience problems.

Another common situation is ModuleNotFoundError errors. Jupyter must parse your pipeline in the process that runs
the Jupyter application itself. If your pipeline contains dotted paths (e.g., tasks that are Python functions, task hooks,
task clients, etc.), loading the pipeline will fail if such dotted paths are not importable. Scripts and notebooks are
handled differently. Hence, a pipeline whose tasks are all notebooks/scripts won’t have this issue.

If you cannot find the problem, you can move to a directory that stores any of the scripts that aren’t having the cell
injected, start a Python session and run:

from ploomber import lazily_load_entry_point; lazily_load_entry_point()

lazily_load_entry_point is the function that Ploomber uses internally to initialize your pipeline. Calling this
function allows you to replicate the same conditions when initializing your pipeline for cell injection.

Detecting changes

Ploomber parses your pipeline whenever you open a file to detect changes. The parsing runtime depends on the number
of tasks, and although it is fast, it may slow down file loading in pipelines with lots of tasks. You can turn off continuous
parsing by setting jupyter_hot_reload (in the meta section) option to False. You’ll have to restart Jupyter if you
turn this option off to detect changes.

Managing multiple pipelines

Jupyter can detect more than one pipeline in a single project. There are two ways to achieve this.

The first one is to create sibling folders, each one with its own pipeline.yaml:

some-pipeline/
pipeline.yaml
some-script.py

another-pipeline/
pipeline.yaml
another-script.py

Since Ploomber looks for a pipeline.yaml file in the current directory and parents, it will correctly find the appro-
priate file if you open some-script.py or another-script.py (assuming they’re already declared as tasks in their
corresponding pipeline.yaml.

Important: If using Python functions as tasks, you must use different module names for each pipeline. Otherwise,
the module imports first will be cached and used for the other pipeline. See the following example.

some-pipeline/
pipeline.yaml
some_tasks.py

another-pipeline/
pipeline.yaml
other_tasks.py

2.3. User Guide 35

ploomber, Release 0.23.1

The second option is to keep a unique project root and name each pipeline differently:

pipeline.yaml
some-script.py
pipeline.another.yaml
another-script.py

In this case, Ploomber will load pipeline.yaml by default, but you can switch this by setting the ENTRY_POINT
variable to the other spec. (e.g., pipeline.another.yaml). Note that the environment variable must be a filename
and not a path.

Exploratory Data Analysis

There are two ways to use Ploomber in Jupyter. The first one is by opening a task file in Jupyter (i.e., the source file is
listed in your pipeline.yaml file.

Another way is to load your pipeline in Jupyter to interact with it. This second approach is best when you already have
some tasks, and you want to explore their outputs to decide how to proceed with further analysis.

Say that you have a single task that loads the data:

tasks:
- source: load.py
product:
nb: output/load.ipynb
data: output/data.csv

If you want to explore the raw data to decide how to organize downstream tasks (i.e., for data cleaning). You can create
a new notebook with the following code:

from ploomber.spec import DAGSpec

dag = DAGSpec.find().to_dag()

Note that this exploratory notebook is not part of your pipeline (i.e., it doesn’t appear in the tasks section of your
pipeline.yaml), it’s an independent notebook that loads your pipeline declaration.

The dag variable is an object that contains your pipeline definition. If you want to load your raw data:

import pandas as pd

df = pd.read_csv(dag['load'].product)

Using the dag object avoids hardcoded paths to keep notebooks clean.

There are other things you can do with the dag object. See the following guide for more examples: Interactive sessions.

As your pipeline grows, exploring it from Jupyter helps you decide what tasks to build next and understand dependencies
among tasks.

If you want to take a quick look at your pipeline, you may use ploomber interact from a terminal to get the dag
object.

36 Chapter 2. Index

ploomber, Release 0.23.1

Opening .py files as notebooks with a single click

It is now possible to open .py files as notebooks in JuptyerLabwith a single click (this requires jupytext>=1.13.2).

If using ploomber>=0.14.7, you can enable this with the following command:

ploomber nb --single-click

To disable:

ploomber nb --single-click-disable

If running earlier versions of Ploomber, you can enable this by changing the default viewer for text notebooks. For
instructions, see jupytext’s documentation (click on the triangle right before the With a click on the text file
in JupyterLab section).

2.3.4 Scaffolding projects

Note: This is a guide on ploomber scaffold. For API docs see Create new project.

You can quickly create new projects using the scaffold command:

ploomber scaffold

After running it, type a name for your project and press enter. The command will create a pre-configured project with
a sample pipeline.

New in 0.16: ploomber scaffold now takes a positional argument. For example, ploomber example
my-project.

By adding the --empty flag to scaffold, you can create a project with an empty pipeline.yaml:

ploomber scaffold --empty

Scaffolding tasks

Once you have a pipeline.yaml file, ploomber scaffold behaves differently, allowing you to create new task files
quickly. For example, say you add the following task to your YAML file:

tasks:
some existing tasks....

new task
- source: tasks/my-new-task.py
product: output/my-new-task.ipynb

Executing:

ploomber scaffold

Will create a base task at tasks/my-new-task.py. This command works with Python scripts, functions, Jupyter
notebooks, R Markdown files, R scripts, and SQL scripts.

2.3. User Guide 37

https://jupytext.readthedocs.io/en/latest/index.html#install

ploomber, Release 0.23.1

ploomber scaffold works as long as your pipeline.yaml file is in a standard location (Default locations); hence,
you can use it even if you didn’t create your project with an initial call to ploomber scaffold.

By adding the --entry-point/ -e, you can specify a custom entry point. For example, if your spec is named
pipeline.serve.yaml:

ploomber scaffold --entry-point pipeline.serve.yaml

Packaging projects

When working on larger projects, it’s a good idea to configure them as a Python package. Packaged projects have more
structure and require more configuration, but they allow you to organize your work better.

For example, if you have Python functions that you re-use in several files, you must modify your PYTHONPATH or sys.
path to ensure that such functions are importable wherever you want to use them. If you package your project, this is
no longer necessary since you can install your project using pip:

pip install --editable path/to/myproject

Installing with pip tells Python to treat your project as any other package, allowing you to import modules anywhere
(in a Python session, notebook, or other modules inside your project).

You can scaffold a packaged project with:

ploomber scaffold --package

Note that the layout is different. At the root of your project, you’ll see a setup.py file, which tells Python that this di-
rectory contains a package. The pipeline.yaml file is located at src/{package-name}/pipeline.yaml. All your
pipeline’s source code must be inside the src/{package-name} directory. Other files such as exploratory notebooks
or documentation must be outside the src directory.

For example, say you have a process_data function defined at src/my_awesome_package/processors.py, you
may start a Python session and run:

from my_awesome_package import processors

processors.process_data(X)

Such import statement works independently of the current working directory; you no longer have to modify the
PYTHONPATH or sys.path. Everything under src/{package-name} is importable.

Managing development and production dependencies

ploomber scaffold generates two dependencies files:

• pip: requirements.txt (production) and requirements.dev.txt (development)

• conda: environment.yml (production) and environment.dev.yml (development)

While not required, separating development from production dependencies is highly recommended. During devel-
opment, we usually need more dependencies than we do in production. A typical example is plotting libraries (e.g.,
matplotlib or seaborn); we need them for model evaluation but not for serving predictions. Fewer production depen-
dencies make the project faster to install, but more importantly, it reduces dependency resolution errors. The more
dependencies you have, the higher the chance of running into installation issues.

After executing ploomber scaffold command, and editing your dependency files, you can run:

38 Chapter 2. Index

ploomber, Release 0.23.1

ploomber install

To install dependencies. Furthermore, it configures your project if it’s a package (i.e., you created it with ploomber
scaffold --package).

During deployment, only install production dependencies and ignore development ones.

If you want to learn more about the ploomber install command, check out the CLI documentation: install.

If you want to know more about dependency management, check out this post in our blog.

Locking dependencies

Changes in your dependencies may break your project at any moment if you don’t pin versions. For example, if you
train a model using scikit-learn version 0.24 but only set scikit-learn as a dependency (without the version number). As
soon as scikit-learn introduces breaking API changes, your project will fail. Therefore, it is essential to record specific
versions to prevent broken projects.

You can do so with:

ploomber install

Such command detects whether to use pip/conda and creates lock files for development and production dependencies;
lock files contain an exhaustive list of dependencies with a specific version.

2.3.5 Refactoring legacy notebooks

This tutorial shows how to convert legacy notebooks into Ploomber pipelines.

Note: If you don’t have a sample notebook, download one from here.

or execute:

curl -O https://raw.githubusercontent.com/ploomber/soorgeon/main/examples/machine-
→˓learning/nb.ipynb

The only requirement for your notebook is to separate sections with H2 headings:

Here’s an example notebook with three sections separated by H2 headings:

2.3. User Guide 39

https://ploomber.io/posts/python-envs/
https://github.com/ploomber/soorgeon/blob/main/examples/machine-learning/nb.ipynb
https://ploomber.io/images/doc/h2-heading.png

ploomber, Release 0.23.1

Once your notebook is ready, you can refactor it with:

install soorgeon
pip install soorgeon

refactor the nb.ipynb notebook
soorgeon refactor nb.ipynb

Tip: Sometimes, soorgeon may not be able to split your notebook sections, if so, run soorgeon refactor nb.
ipynb --single-task to generate a pipeline with one task. If you have questions, send us a message on Slack.

The command above will generate a pipeline.yaml with your pipeline declaration and .ipynb tasks (one per sec-
tion).

You can also tell Soorgeon to generate tasks in .py format:

generate tasks in .py format (requires soorgeon>=0.0.13)
soorgeon refactor nb.ipynb --file-format py

Note that due to the Jupyter integration, you can open .py files as notebooks in Jupyter

40 Chapter 2. Index

https://ploomber.io/images/doc/nb-with-h2-headings.png
https://ploomber.io/community

ploomber, Release 0.23.1

To run the pipeline:

install dependencies
pip install -r requirements.txt

run Ploomber pipeline
ploomber build

That’s it! Now that you have a Ploomber pipeline, you can benefit from all our features! If you want to learn more
about the framework, check out the basic concepts tutorial.

Resources

• Soorgeon’s user guide

• GitHub

• Interactive example

• Blog post series on notebook refactoring: Part I, and Part II

To run this locally, install Ploomber and execute: ploomber examples -n guides/parametrized

Found an issue? Let us know.

Questions? Ask us on Slack.

2.3.6 Parametrized pipelines

Tutorial showing how to parametrize pipelines and change parameters from the command-line.

Often, pipelines perform the same operation over different subsets of the data. For example, say you are developing
visualizations of economic data. You might want to generate the same charts for other countries.

One way to approach the problem is to have a for loop on each pipeline task to process all needed countries. But such
an approach adds unnecessary complexity to our code; it’s better to keep our logic simple (each task processes a single
country) and take the iterative logic out of our pipeline.

Ploomber allows you to do so using parametrized pipelines. Let’s see a sample using a pipeline.yaml file.

2.3. User Guide 41

https://ploomber.io/images/doc/lab-open-with-notebook.png
https://github.com/ploomber/soorgeon/blob/main/doc/guide.md
https://github.com/ploomber/soorgeon
https://github.com/ploomber/projects/tree/master/guides/refactor
https://ploomber.io/blog/refactor-nb-i/
https://ploomber.io/blog/refactor-nb-ii/
https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/parametrized%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/parametrized%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

Spec API (pipeline.yaml)

Content of pipeline.yaml
tasks:
- source: print.py
name: print
product:
nb: 'output/{{some_param}}/notebook.html'

papermill_params:
log_output: True

params:
some_param: '{{some_param}}'

The pipeline.yaml above has a placeholder called some_param. It is coming from a file called env.yaml:

Content of env.yaml
some_param: default_value

When reading your pipeline.yaml, Ploomber looks for an env.yaml file. If found, all defined keys will be available
to your pipeline definition. You can use these placeholders (placeholders are strings between double curly brackets) in
any of the fields of your pipeline.yaml file.

In our case, we are using it in two places. First, we will save the executed notebook in a folder with the value of
some_param; this will allow you to keep copies of the generated output in a different folder depending on your param-
eter. Second, if we want to use the parameter in our code, we have to pass it to our tasks; all tasks take an optional
params with arbitrary parameters.

Let’s see how the code looks like:

Content of print.py
+ tags=["parameters"]
upstream = None
product = None
some_param = None

+
print('some_param: ', some_param, ' type: ', type(some_param))

Our task is a Python script, meaning that parameters are passed as an injected cell at runtime. Let’s see what happens
if we build our pipeline.

[1]: %%capture captured
%%sh
ploomber build --force --log INFO

[2]: def filter_output(captured, startswith):
return print('\n'.join([

line for line in captured.stderr.split('\n')
if line.startswith(startswith)

]))

filter_output(captured, startswith='INFO:papermill:some_param')

INFO:papermill:some_param: default_value type: <class 'str'>

42 Chapter 2. Index

ploomber, Release 0.23.1

We see that our param some_param is taking the default value (default_value) as defined in env.yaml. The
command-line interface is aware of any parameters. You can see them using the --help option:

[3]: %%sh
ploomber build --help

usage: ploomber [-h] [--log LOG] [--log-file LOG_FILE]
[--entry-point ENTRY_POINT] [--force] [--skip-upstream]
[--partially PARTIALLY] [--debug]
[--env--some_param ENV__SOME_PARAM]

Build pipeline

optional arguments:
-h, --help show this help message and exit
--log LOG, -l LOG Enables logging to stdout at the specified level
--log-file LOG_FILE, -F LOG_FILE

Enables logging to the given file
--entry-point ENTRY_POINT, -e ENTRY_POINT

Entry point, defaults to pipeline.yaml
--force, -f Force execution by ignoring status
--skip-upstream, -su Skip building upstream dependencies. Only applicable

when using --partially
--partially PARTIALLY, -p PARTIALLY

Build a pipeline partially until certain task
--debug, -d Drop a debugger session if an exception happens
--env--some_param ENV__SOME_PARAM

Default: default_value

Apart from the default parameters from the ploomber build command, Ploomber automatically adds any parameters
from env.yaml, we can easily override the default value. Let’s do that:

[4]: %%capture captured
%%sh
ploomber build --force --env--some_param another_value --log INFO

[5]: filter_output(captured, startswith='INFO:papermill:some_param')

INFO:papermill:some_param: another_value type: <class 'str'>

We see that our task effectively changed the value!

Finally, let’s see how the output/ folder looks like:

[2]: %%sh
tree output

output
another_value

notebook.html
default_value

notebook.html

2 directories, 2 files

We have separate folders for each parameter, helping to keep things organized and taking the looping logic out of our
pipeline.

2.3. User Guide 43

ploomber, Release 0.23.1

Notes

• There are some built-in placeholders that you can use without having an env.yaml file. For example, {{here}}
will expand to the pipeline.yaml parent directory. Check out the Spec API documentation for more informa-
tion.

• This example uses a Python script as a task. In SQL pipeline, you can achieve the same effect by using the
placeholder in the product’s schema or a table/view name prefix.

• If the parameter takes many different values and you want to run your pipeline using all of them, calling them
by hand might get tedious. So you have two options 1) write a bash script that calls the CLI with different value
parameters or 2) Use the Python API (everything that the CLI can do, you can do with Python directly), take a
look at the DAGSpec documentation.

• Parametrized pipeline.yaml files are a great way to simplify a task’s logic but not overdo it. If you find yourself
adding too many parameters, it’s a better idea to use the Python AP directly; factory functions are the correct
pattern for highly customized pipeline construction.

• Given that the two pipelines are entirely independent, we could even run them in parallel.

Python API (factory functions)

Parametrization is straightforward when using a factory function. If your factory takes parameters, they’ll also be
available in the command-line interface. Types are inferred from type hints. Let’s see an example:

Content of factory.py
from ploomber import DAG

def make(param: str, another: int = 10):
dag = DAG()
add tasks to your pipeline...
return dag

Our function takes two parameters: param and another. Parameters with no default values (param) turn into positional
arguments, and function parameters with default values convert to optional parameters (another). To see the same
auto-generated API, you can use the --help command:

[7]: %%sh
ploomber build --entry-point factory.make --help

usage: ploomber [-h] [--log LOG] [--log-file LOG_FILE]
[--entry-point ENTRY_POINT] [--force] [--skip-upstream]
[--partially PARTIALLY] [--debug] [--another ANOTHER]
param

Build pipeline

positional arguments:
param

optional arguments:
-h, --help show this help message and exit
--log LOG, -l LOG Enables logging to stdout at the specified level
--log-file LOG_FILE, -F LOG_FILE

(continues on next page)

44 Chapter 2. Index

https://docs.ploomber.io/en/latest/api/spec.html#default-placeholders
https://docs.python.org/3/library/typing.html

ploomber, Release 0.23.1

(continued from previous page)

Enables logging to the given file
--entry-point ENTRY_POINT, -e ENTRY_POINT

Entry point, defaults to pipeline.yaml
--force, -f Force execution by ignoring status
--skip-upstream, -su Skip building upstream dependencies. Only applicable

when using --partially
--partially PARTIALLY, -p PARTIALLY

Build a pipeline partially until certain task
--debug, -d Drop a debugger session if an exception happens
--another ANOTHER

Note that the Python API requires more work than a pipeline.yaml file, but it is more flexible. [Click here] to see
examples using the Python API.

2.3.7 Configuration (dev/prod)

In the previous guide (Parametrized pipelines), we saw how to use an env.yaml file to parametrize our pipeline and
switch parameters from the command line.

Sometimes we want to change all the parameters at once. The most common scenario is to change configuration during
development and production.

For example, say you’re working on a Machine Learning pipeline whose pipeline.yaml looks like this:

tasks:

- source: get.py
product:
nb: get.ipynb
data: raw.csv

params:
sample_pct: '{{sample_pct}}'

- source: get.py
product:
nb: get.ipynb
data: raw.csv

- source: get.py
product:
nb: get.ipynb
data: raw.csv

The pipeline above has one placeholder '{{sample_pct}}', which controls which percentage of raw data to down-
load. You may want to develop locally with a fraction of the data, say 20%, to iterate quickly. To smoke test quickly,
you may run it with a smaller sample, say 1%. Finally, to train a model, you’ll use 100% of the data.

Tip: You can use placeholders (e.g., {{sample_pct}}) anywhere in the pipeline.yaml file. Another typical use
case is to switch the product location (e.g., product: '{{product_directory}}/some-data.csv'.

By default, Ploomber looks for an env.yaml. To enable rapid local development with 20% of the data, you may create
an env.yaml file like this:

2.3. User Guide 45

https://github.com/ploomber/projects/tree/master/python-api-examples
https://en.wikipedia.org/wiki/Smoke_testing_(software)

ploomber, Release 0.23.1

sample_pct: 20

For smoke testing, env.test.yaml:

sample_pct: 1

And for training, env.train.yaml:

sample_pct: 100

To switch configurations, you can set the PLOOMBER_ENV_FILENAME environment variable to env.test.yaml in the
testing environment and to env.train.yaml in the training environment.

Whenever PLOOMBER_ENV_FILENAME has a value, Ploomber uses it and looks for a file with such a name. Note that this
must be a filename, not a path since Ploomber expects env.yaml files to exist in the same folder as the pipeline.yaml
file. For example, if you’re on Linux or macOS:

export PLOOMBER_ENV_FILENAME=env.train.yaml && ploomber build

Important: If you’re using the Jupyter integration and want to see the changes reflected in the injected cell, you need
to shut down Jupyter set PLOOMBER_ENV_FILENAME, and start Jupyter again.

Managing multiple pipelines

If your project has more than one pipeline, they’ll likely need different env.yaml files.

Say you have two pipelines, one for training a model (pipeline.yaml) and one for serving it (pipeline.serve.
yaml). You can create an env.yaml file to parametrize pipeline.yaml and an env.serve.yaml to parametrize
pipeline.serve.yaml:

project/
pipeline.yaml
pipeline.serve.yaml
env.yaml
env.serve.yaml

The general rule is as follows: When loading a pipeline.{name}.yaml, extract the {name} portion. Then look for a
env.{name}.yaml file, if such file doesn’t exist, look for an env.yaml file. Note that the PLOOMBER_ENV_FILENAME
environment variable overrides this process.

Alternatively, you may separate the pipelines into different directories, and put an env.yaml on each one:

project-a/
pipeline.yaml
env.yaml

project-b/
pipeline.yaml
env.yaml

46 Chapter 2. Index

ploomber, Release 0.23.1

env.yaml composition (DRY)

Note: New in version 0.18

In many cases, your development and production environment configuration share many values in common. To keep
them simple, you may create an env.yaml (development configuration) and have your env.prod.yaml (production
configuration) inherit from it:

key: value
key_another: dev-value

Then in your env.prod.yaml:

meta:
import development config
import_from: env.yaml

no need to declare key: value here, it'll be imported from env.yaml

overwrite value
key_another: production-value

Note that if the value in import_from is a relative path, it is considered so relative to the location of the env file (in
our case env.prod.yaml).

You can switch values in env.yaml from the command line, to see how:

ploomber build --help

Example, if you have a key in your env.yaml:

ploomber build --env--key new-value

2.3.8 SQL Pipelines

This guide explains how to develop pipelines where some of all tasks are SQL scripts.

Note: This tutorial shows the built-in SQL features. However, this is not the only way for Ploomber to interact with
databases. You may as well create functions (or scripts) that run queries in a database. The primary benefit of using the
built-in features is that Ploomber manages many things for you (such as active connections, running queries in parallel,
dumping tables to local files), so you only write .sql files.

Tip: Check out our JupySQL library. It allows you to run SQL in a Jupyter notebook: result = %sql SELECT *
FROM table

2.3. User Guide 47

https://jupysql.readthedocs.io/en/latest/intro.html

ploomber, Release 0.23.1

Quick Start

If you want to take a look at the sample pipeline, you have a few options:

• Source code on Github

• Interactive demo

Or run it locally:

ploomber examples --name templates/spec-api-sql

You can also refer to this README file for more information on using SQL scripts to manipulate data in a database,
dump a table, and plot it with Python.

Creating Sample Data

To create sample data, you can run the following code:

create sample data
cd setup
bash setup.sh
move back to the original spec-api-sql folder
cd ..

Connecting To Databases

Note: For a more detailed explanation on connecting to a database, see: Database configuration.

The first step to write a SQL pipeline is to tell Ploomber how to connect to the database, by providing a function
that returns either a ploomber.clients.SQLAlchemyClient or a ploomber.clients.DBAPIClient. These two
clients cover all databases supported by Python, even systems like Snowflake or Apache Hive.

SQLAlchemyClient takes a single argument, the database URI (Click here for documentation on sqlalchemy URIs.).
As the name suggests, it uses SQLAlchemy under the hood, so any database supported by such library is supported as
well. Below, there’s is an example that connects to a local SQLite database:

from ploomber.clients import SQLAlchemyClient

def get_client():
return SQLAlchemyClient('sqlite:///database.db')

If SQLAlchemy doesn’t support your database, you must use ploomber.clients.DBAPIClient instead. Refer to
the documentation for details.

48 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/templates/spec-api-sql
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Ftemplates/spec-api-sql%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/blob/master/templates/spec-api-sql/README.ipynb
https://docs.sqlalchemy.org/en/13/core/engines.html

ploomber, Release 0.23.1

Configuring The Task Client In pipeline.yaml

To configure your pipeline.yaml to run a SQL task, source must be a path to the SQL script. To indicate how to
load the client, you have to include the client key:

tasks:
source: sql/create-table.sql
client: clients.get_client
task declaration continues...

client must be a dotted path to a function that instantiates a client. If your pipeline.yaml and clients.py are in
the same folder, you should be able to do this directly. If they are in a different folder, you’ll have to ensure that the
function is importable.

You can reuse the same dotted path in many tasks. However, since it is common for many tasks to query the same
database, you may declare a task-level client like this:

clients:
all SQLScript tasks use the same client instance
SQLScript: config.get_client
all SQLDump tasks use the same client instance
SQLDump: config.get_client

tasks:
source: sql/create-table.sql
no need to add client here

SQLScript (creates a table/view), and SQLDump (dump to a local file) are the two most common types of SQL tasks,
let’s review them in detail.

Creating SQL Tables/Views With SQLScript

If you want to organize your SQL processing in multiple steps, you can use SQLScript to generate one table/view per
task. The declaration in the pipeline.yaml file looks like this:

tasks:
source: sql/create-table.sql
client: clients.get_client
product: [schema, name, table]

product can be a list with three elements: [schema, name, kind], or 2: [name, kind]. Where kind can be
table or view.

A typical script (sql/create-table.sql in our case) looks like this:

DROP TABLE IF EXISTS {{product}};

CREATE TABLE {{product}} AS
SELECT * FROM schema.clean
continues...

This DROP TABLE ... CREATE TABLE .. format ensures that the table (or view) is deleted before creating a new
version if the source code changes.

Note that we are using a {{product}} placeholder in our script, this will be replaced at runtime for the name value in
tasks[*].product (in our case: schema.name.

2.3. User Guide 49

ploomber, Release 0.23.1

SQLScript And Product’s Metadata

Incremental builds (What are incremental builds?) allow you speed up pipeline execution. To enable this, Ploomber
keeps track of source code changes. When tasks generate files (say data.csv), a metadata file is saved next to the
product file (e.g., .data.csv.metadata).

To enable incremental builds in SQLScript tasks, you must configure a product metadata backend.

If you are using PostgreSQL, you can use ploomber.products.PostgresRelation; if using SQLite, you can use
ploomber.products.SQLiteRelation. In both cases, metadata is saved in the same database where the tables/views
are created. Hence, you can reuse the task client. Here’s an example if using PostgreSQL:

meta:
configure pipeline to use PostgresRelation by default
product_default_class:

SQLScript: PostgresRelation

same client for task and product
clients:

SQLScript: clients.get_pg_client
PostgresRelation: clients.get_pg_client

tasks:
source: sql/create-table.sql
product: [schema, name, table]

For any other database, you have two options, either use ploomber.products.SQLRelation which is a product
that does not save any metadata at all (this means you don’t get incremental builds) or use ploomber.products.
GenericSQLRelation, which stores metadata in a SQLite database.

A typical configuration to enable incremental builds looks like this:

meta:
product_default_class:

SQLScript: GenericSQLRelation

clients:
SQLScript: clients.get_db_client
GenericSQLRelation: clients.get_metadata_client

tasks:
source: sql/create-table.sql
name: some_task

Don’t confuse the task’s client with the product’s client. Task clients control where to execute the code. Product
clients manage where to save metadata.

50 Chapter 2. Index

ploomber, Release 0.23.1

Placeholders In SQL Scripts

You can reference the product list in your pipeline.yaml in your script using the {{product}} placeholder. For
example [schema, name, table] renders to: schema.name.

To specify upstream dependencies, use the {{upstream['some_task']}} placeholder. Here’s a complete example:

-- {{product}} gets replaced by the value in pipeline.yaml
DROP TABLE IF EXISTS {{product}};

CREATE TABLE {{product}} AS
-- this task depends on the output generated by a task named "clean"
SELECT * FROM {{upstream['clean']}}
WHERE x > 10

Let’s say our product is [schema, name, table] And the task named clean generates a product schema.clean,
the script above renders to:

DROP TABLE IF EXISTS schema.name;

CREATE TABLE schema.name AS
SELECT * FROM schema.clean
WHERE x > 10

If you want to see the rendered code for any task, execute the following in the terminal:

ploomber task task_name --source

(Change task_name for the task you want)

Note: when executing a SQL script, you usually want to replace any existing table/view. Some databases support the
DROP TABLE IF EXISTS statement to do so, but other databases (e.g., Oracle) have different procedures. Check your
database’s documentation for details.

Important: Some database drivers do not support sending multiple statements to the database in a single call (e.g.,
SQLite), in such case, you can use the split_source parameter in either SQLAlchemyClient or DBAPIClient to
split your statements and execute them one at a time, allowing you to write a single .sql file to perform the DROP
TABLE IF EXISTS then CREATE TABLE AS logic.

The following diagram shows our example pipeline along with some sample source code for each task and the rendered
version.

2.3. User Guide 51

ploomber, Release 0.23.1

Dumping Data With SQLDump

Note: SQLDump only works with ploomber.clients.SQLAlchemyClient.

A minimal SQLDump example is available here

If you want to dump the result of a SQL query, use ploomber.tasks.SQLDump. Configuring this task is very similar
to a regular SQL task:

clients:
client for the database to pull data from
SQLDump: clients.get_client

tasks:
some sql tasks here...

dump the output of dump-query.sql
source: sql/dump-query.sql
since this is a SQL dump, product is a path to a file
product: output/data.csv

some python tasks here...

If you want to dump an entire table, you can do:

SELECT * FROM {{upstream['some_task']}}

Note that SQLDump only works with SQLAlchemyClient. Product must be a file with .csv or .parquet extension.

52 Chapter 2. Index

https://ploomber.io/images/doc/sql/diag.png
https://github.com/ploomber/projects/tree/master/cookbook/sql-dump

ploomber, Release 0.23.1

By default, SQLDump downloads data in chunks of 10,000 rows, but yu can change this value:

tasks:
source: sql/dump-query.sql
product: output/data.csv
set chunksize to 1 million rows
chunksize: 1000000

To dump a single file: chunksize: null.

Important: Downloading .parquet in chunks may yield errors if the schema inferred from one chunk is not the
same as the one in another chunk. If you experience an issue, either change to .csv or set chunksize: null.

Important: SQLDump works with all databases supported by Python because it relies on pandas to dump data.
However, this introduces a performance overhead. So if you’re dumping large tables, consider implementing a solution
optimized for your database.

Other SQL Tasks

There are other SQL tasks not covered here, check out the documentation for details:

• ploomber.tasks.SQLTransfer (move data from one db to another)

• ploomber.tasks.SQLDump (upload data)

• ploomber.tasks.PostgresCopyFrom (efficient postgres data upload)

Where To Go From Here

• SQL templating shows how to use jinja to write succinct SQL scripts

• Advanced SQL pipeline example

• BigQuery example

To run this locally, install Ploomber and execute: ploomber examples -n guides/sql-templating

Found an issue? Let us know.

Questions? Ask us on Slack.

2.3.9 SQL templating

Introductory tutorial teaching how to develop modular SQL pipelines.

2.3. User Guide 53

https://github.com/ploomber/projects/tree/master/templates/etl
https://github.com/ploomber/projects/tree/master/templates/google-cloud
https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/sql-templating%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/sql-templating%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

Basic templating

SQL templating is a powerful way to make your SQL scripts more concise. It works by using a templating language
(Ploomber uses jinja) to generate SQL code on the fly.

You’ve already used SQL templating if you’ve followed the SQL pipelines tutorial in the Get started section. Let’s take
a look at the structure of a SQL script in Ploomber:

DROP TABLE IF EXISTS {{product}};

CREATE TABLE {{product}} AS
SELECT * FROM {{upstream['clean']}}
WHERE x > 10

The {{product}} placeholder will be replaced at runtime by whatever value this task has in the product section. For
example, if you have product: [schema, name, table], {{product}} becomes schema.name.

To ensure the table is re-created on each run, we add a DROP TABLE IF EXISTS ...; statement before CREATE
TABLE ..;, since both of them take the table name as an argument, we can use the {{product}} placeholder.

Finally, the {{upstream['clean']}} placeholder tells Ploomber that the current script uses the product from a task
named clean as input data. This defines the dependency relationship between these two scripts and implies that the
placeholder will be replaced by the actual table/view generated by the clean task.

These are the essential elements for templated SQL scripts; you don’t have to use more if you don’t want to but some-
times it is convenient to write concise code and maximize reusability. Let’s see a few more examples.

Control structures

jinja offers control structures that help us write SQL code on the fly. Say we want to compute summary statistics on a
given column:

SELECT
some_column,
AVG(another_column) as avg_another_column,
STDEV(another_column) as stdev_another_column,
COUNT(another_column) as count_another_column,
SUM(another_column) as sum_another_column,
MAX(another_column) as max_another_column,
MIN(another_column) as min_another_column,

FROM some_table
GROUP BY some_column

This code is very repetitive; now imagine how repetitive. We can generate the same code succinctly using a for loop:

SELECT
some_column,

-- loop over aggregation functions
{% for fn in ['AVG', 'STDEV', 'COUNT', 'SUM', 'MAX', 'MIN'] %}

-- apply function to the column, name the column
-- and only add a comma if we are not in the last loop element
{{fn}}({{col_agg}}) as {{fn}}_{{col_agg}}{{ ',' if not loop.last else '' }}

{% endfor %}
FROM some_table
GROUP BY some_column

54 Chapter 2. Index

https://github.com/pallets/jinja

ploomber, Release 0.23.1

Macros

Macros let us maximize SQL code reusability by defining snippets that we can “import” into other files. To define
a macro, enclose your snippet between the {% macro MACRO_NAME %} ... {% endmacro %} tags. Let’s create a
macro using our previous snippet:

Content of sql/macros.sql
{% macro agg(col_group, col_agg, from_table) -%}

SELECT
{{col_group}},

{% for fn in ['AVG', 'STDEV', 'COUNT', 'SUM', 'MAX', 'MIN'] %}
{{fn}}({{col_agg}}) as {{fn}}_{{col_agg}}{{ ',' if not loop.last else '' }}

{% endfor %}
FROM {{from_table}}
GROUP BY {{col_group}}

{%- endmacro %}

The {% macro %} tag defines the macro name and parameters (if any). To use our macro in a different file, we must
import it. Let’s say we define the previous macro in a macros.sql file:

Content of sql/create-table.sql
-- import macros
{% import "macros.sql" as m %}

DROP TABLE IF EXISTS {{product}};

CREATE TABLE {{product}} AS
-- use macro
{{m.agg(col_group='country', col_agg='price', from_table='sales')}}

Configuring support for macros

We have to make a small change to our pipeline.yaml file to work with macros. So far, to specify which SQL files
to use, we’ve just passed the file’s path in the source key. However, to import macros in our scripts, we must configure
a source loader.

A source loader is simply a folder with files, with small addition: it defines a “jinja environment” that makes imports
work (to know more about jinja environments, click here.

Let’s say all the scripts in our pipeline are in a sql/ directory. sql/ has two scripts, which correspond to the files
shown in the previous section:

[1]: %%sh
tree sql

sql
create-table.sql
macros.sql

0 directories, 2 files

To configure our source loader. We need to add a source_loader section like this:

2.3. User Guide 55

https://jinja.palletsprojects.com/en/2.11.x/api/#basics

ploomber, Release 0.23.1

Content of pipeline.yaml
meta:
initialize source loader
source_loader:
use the sql/ folder as the "root" for loading files
path: sql/

tasks:
sources are now loaded from the source loader, paths are relative
to the source loader root directory
- source: create-table.sql
name: sql-task
product: [some_table, table]
client: db.get_client

Printing rendered code

Templated SQL helps us write more concise SQL code, but if your template renders to an invalid SQL script, you’ll
get syntax errors, only use it when the benefits outweigh this risk. One way to debug SQL templates is to see how the
rendered code looks like, you can do so from the command line:

[2]: %%sh
ploomber task sql-task --source

Loading pipeline...
-- import macros

DROP TABLE IF EXISTS some_table;

CREATE TABLE some_table AS
-- use macro
SELECT

country,

AVG(price) as AVG_price,

STDEV(price) as STDEV_price,

COUNT(price) as COUNT_price,

SUM(price) as SUM_price,

MAX(price) as MAX_price,

MIN(price) as MIN_price

FROM sales
GROUP BY country

100%|| 1/1 [00:00<00:00, 874.18it/s]

56 Chapter 2. Index

ploomber, Release 0.23.1

As we can see, our template is generating a valid SQL script. But it’d be easier to spot errors in the rendered code than
in the templated source if it didn’t.

Where to go next

• Jinja documentation

2.3.10 File clients

Note: This is a guide on file clients. For API docs see Clients.

File clients are used for uploading File products to the cloud. Currently two clients are supported for Amazon S3 and
Google Cloud respectively.

During the upload process, an absolute local file path of /path/to/project/out/data.csv gets translated to the
remote path path/to/parent/out/data.csv. Here, parent is the parent folder in the bucket to store the files.

Pre-requisites

• Create a bucket in the required cloud platform, or use an existing one.

• Configure the environment with the credentials or create a credentials.json file if environment is not configured.

Create a clients file

Next, create a clients.py file that contains the below function for S3 client:

from ploomber.clients import S3Client

def get_s3():
return S3Client(bucket_name='bucket-name',

parent='parent-folder-name',
pass the json_credentials_path if env not configured with␣

→˓credentials
json_credentials_path='credentials.json')

Sample file for Google Cloud Storage client:

from ploomber.clients import GCloudStorageClient

def get_gcloud():
return GCloudStorageClient(bucket_name='bucket-name',

parent='parent-folder-name'
pass the json_credentials_path if env not configured␣

→˓with credentials
json_credentials_path='credentials.json')

2.3. User Guide 57

https://jinja.palletsprojects.com/en/2.11.x/templates/

ploomber, Release 0.23.1

Configure the pipeline

Now, configure the pipeline.yaml file to add the clients key to specify the S3 or GCloud function:

some content
......

add this
clients:
File: project-name.clients.get_client

content continues...

Working with external datasets

The file clients only upload products generated by the pipeline. If you want to work with an external dataset, you should
download such a dataset in the pipeline task that uses it as input. If you need help contact us on Slack.

Refer: Google cloud template

Note:
• File clients can be used when running pipelines locally as well as when exporting pipelines to external servers

(e.g., AWS Batch).

• ploomber build commands downloads the existing cloud artifacts for a pipeline run previously.

• The LocalStorageClient is mostly used for internal testing and can also be used to locally backup products.

To run this locally, install Ploomber and execute: ploomber examples -n guides/testing

Found an issue? Let us know.

Questions? Ask us on Slack.

2.3.11 Pipeline testing

Tutorial showing how to use a task’s on_finish hook to test data quality.

Testing your pipeline is critical to ensure your data expectations hold. When you perform a data transformation, you
are expecting the output to have certain properties (e.g. no nulls in certain column). Without testing, these expectations
won’t be verified and will cause errors errors to propagate to all downstream tasks.

These are the most common sources of errors when transforming data:

1. A join operation generates duplicated entries because a wrong assumption of a one-to-one relationship (which
is really a one-to-many) in the source tables

2. A function that aggregates data returns NULL because at least one of the input data points was NULL

3. Dirty data points are used in the analysis (e.g. in a column age, you forgot to remove corrupted data points with
negative values)

Some of these errors are easy to spot (2), but it might take you some tome to find out about others (1 and 3), or worst,
you will never notice these errors and just use incorrect data in your analysis. And even if your code is correct and all

58 Chapter 2. Index

https://ploomber.io/community/
https://github.com/ploomber/projects/tree/master/templates/google-cloud
https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/testing%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/testing%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

your expectations hold true, it might not hold true in the future if the data changes and it’s important for you to know
this as soon as it happens.

To make testing effective, your tests should run every time you run your tasks. Ploomber has a mechanism to
automate this.

Sample data

This example loads data from a single table called my_table, which has two columns:

1. age: ranges from 21 to 80 but there are some corrupted records with -42

2. score: ranges from 0 to 10 but there are some corrupted records with missing values

Let’s take a look at our example pipeline.yaml:

[1]: from pathlib import Path

Content of pipeline.yaml
clients:
SQLScript: db.get_client
SQLDump: db.get_client

tasks:
- source: clean.sql
name: clean
product: ['my_clean_table', 'table']
on_finish: integration_tests.test_sql_clean

- source: dump.sql
name: dump
class: SQLDump
product: output/my_clean_table.csv
chunksize: null

- source: transform.py
product:

nb: output/transformed.html
data: output/transformed.csv

on_finish: integration_tests.test_py_transform

The pipeline has three tasks, one to clean the raw table, another one to dump the clean data to a CSV file and finally,
one Python task to transform the data. We included a SQL and a Python task to show how you can test both types of
tasks but we recommend you to do as much analysis as you can using SQL because it scales much better than Python
code (you won’t have to deal with memory errors).

The configuration is straightforward, the only new key is on_finish (inside the first and third task). This is known as
a hook. Task hooks allow you to embed custom logic when certain events happen. on_finish is executed after a task
successfully executes. The value is a dotted path, which tells Ploomber where to find your testing function. Under the
hood, Ploomber will import your function and call it after the task is executed, here’s some equivalent code:

from integration_tests import test_sql_clean

your task is executed...

(continues on next page)

2.3. User Guide 59

ploomber, Release 0.23.1

(continued from previous page)

ploomber calls your testing function...
test_sql_clean()

Before diving into the testing source code, let’s see the rest of the tasks.

clean.sql just filters columns we don’t want to include in the analysis:

Content of clean.sql
DROP TABLE IF EXISTS {{product}};

CREATE TABLE {{product}} AS
SELECT * FROM my_table
WHERE score is not null AND age > 0

dump.sql just selects all rows from the clean table to dump it to the CSV file:

Content of dump.sql
SELECT * FROM {{upstream['clean']}}

Finally, the transform.py script generates a new column using score

Content of transform.py
import pandas as pd

+ tags=["parameters"]
upstream = ['dump']
product = None

+
df = pd.read_csv(upstream['dump'])
df['multiplied_score'] = df.score * 42

+
df.to_csv(product['data'])

Let’s now take a look at our tests:

Content of integration_tests.py
import pandas as pd
from ploomber.testing.sql import nulls_in_columns, range_in_column

def test_sql_clean(client, product):
"""Tests for clean.sql
"""
assert not nulls_in_columns(client, ['score', 'age'], product)
min_age, max_age = range_in_column(client, 'age', product)
assert min_age > 0

def test_py_transform(product):
"""Tests for transform.py
"""

(continues on next page)

60 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

df = pd.read_csv(str(product['data']))
assert not df.multiplied_score.isna().sum()
assert df.multiplied_score.min() >= 0

Testing Python scripts

To test your Python scripts, you have to know which file to look at. You can do so by simply adding product as
argument to your function. If your Python script generates more than one product (like in our case), product will be
a dictionary-like object, that’s why we are using product['data']. This returns a Product object, to get the path to
the file, simply use the str function.

>>> product # dictionary-like object: maps names to Product objects
>>> product['data'] # Product object
>>> str(product['data']) # path to the data file

Testing SQL scripts

To test SQL scripts, you also need the client to send queries to the appropriate database, to do so, just add client to
your testing function.

The ploomber.testing.sql module implements convenient functions to test your tables. They always take client
as its first argument, just pass the client variable directly. Since our SQL script only generates a product, you can
directly pass the product object to the testing function (otherwise pass product[key]) with the appropriate key.

Note: If you’re implementing your own SQL testing logic, doing str(product) will return a {schema}.{name}
string, you can also use product.schema and product.name.

Running the pipeline

Before we run the pipeline, we generate a sample database:

[2]: %%sh
cd setup
python script.py

Let’s now run our pipeline:

[3]: %%sh
ploomber build

name Ran? Elapsed (s) Percentage
--------- ------ ------------- ------------
clean True 0.02013 0.78097
dump True 0.002051 0.0795713
transform True 2.55538 99.1395

Building task 'transform': 0%| | 0/3 [00:00<?, ?it/s]
Executing: 0%| | 0/5 [00:00<?, ?cell/s]
Executing: 20%| | 1/5 [00:01<00:06, 1.75s/cell]
Executing: 100%|| 5/5 [00:02<00:00, 2.39cell/s]
Building task 'transform': 100%|| 3/3 [00:02<00:00, 1.16it/s]

2.3. User Guide 61

ploomber, Release 0.23.1

Everything looks good.

Let’s now imagine a colleague found an error in the cleaning logic and has re-written the script. However, he was
unaware that both columns in the raw table had corrupted data and forgot to include the filtering conditions.

The script now looks like this:

[4]: path = Path('clean.sql')
new_code = path.read_text().replace('WHERE score is not null AND age > 0', '')
path.write_text(new_code)

[4]: 86

Content of clean.sql
DROP TABLE IF EXISTS {{product}};

CREATE TABLE {{product}} AS
SELECT * FROM my_table
WHERE score is not null AND age > 0

Let’s see what happens if we run the pipeline:

[5]: %%capture captured
%%sh --no-raise-error
ploomber build

[6]: print(captured.stderr)

Building task 'clean': 100%|| 3/3 [00:00<00:00, 115.03it/s]
Traceback (most recent call last):
File "/Users/Edu/dev/ploomber/src/ploomber/cli/io.py", line 20, in wrapper
fn(**kwargs)

File "/Users/Edu/dev/ploomber/src/ploomber/cli/build.py", line 51, in main
report = dag.build(force=args.force, debug=args.debug)

File "/Users/Edu/dev/ploomber/src/ploomber/dag/dag.py", line 482, in build
report = callable_()

File "/Users/Edu/dev/ploomber/src/ploomber/dag/dag.py", line 581, in _build
raise build_exception

File "/Users/Edu/dev/ploomber/src/ploomber/dag/dag.py", line 513, in _build
task_reports = self._executor(dag=self,

File "/Users/Edu/dev/ploomber/src/ploomber/executors/serial.py", line 138, in __call__
raise DAGBuildError(str(exceptions_all))

ploomber.exceptions.DAGBuildError:
=============================== DAG build failed ===============================
--------- SQLScript: clean -> SQLRelation(('my_clean_table', 'table')) ---------
---------- /Users/Edu/dev/projects-ploomber/guides/testing/clean.sql -----------
Traceback (most recent call last):
File "/Users/Edu/dev/ploomber/src/ploomber/tasks/abc.py", line 591, in _build
self._post_run_actions()

File "/Users/Edu/dev/ploomber/src/ploomber/tasks/abc.py", line 342, in _post_run_
→˓actions

self._run_on_finish()
File "/Users/Edu/dev/ploomber/src/ploomber/tasks/abc.py", line 333, in _run_on_finish
self.on_finish(**kwargs)

File "/Users/Edu/dev/ploomber/src/ploomber/util/dotted_path.py", line 74, in __call__
(continues on next page)

62 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

out = self._callable(*args, **kwargs_final)
File "/Users/Edu/dev/projects-ploomber/guides/testing/integration_tests.py", line 8,␣

→˓in test_sql_clean
assert not nulls_in_columns(client, ['score', 'age'], product)

AssertionError

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "/Users/Edu/dev/ploomber/src/ploomber/executors/serial.py", line 186, in catch_

→˓exceptions
fn()

File "/Users/Edu/dev/ploomber/src/ploomber/executors/serial.py", line 159, in __call__
return self.fn(**self.kwargs)

File "/Users/Edu/dev/ploomber/src/ploomber/executors/serial.py", line 166, in catch_
→˓warnings

result = fn()
File "/Users/Edu/dev/ploomber/src/ploomber/executors/serial.py", line 159, in __call__
return self.fn(**self.kwargs)

File "/Users/Edu/dev/ploomber/src/ploomber/executors/serial.py", line 235, in build_in_
→˓subprocess

report, meta = task._build(**build_kwargs)
File "/Users/Edu/dev/ploomber/src/ploomber/tasks/abc.py", line 603, in _build
raise TaskBuildError(msg) from e

ploomber.exceptions.TaskBuildError: Exception when running on_finish for task "clean":
=============================== Summary (1 task) ===============================
SQLScript: clean -> SQLRelation(('my_clean_table', 'table'))
=============================== DAG build failed ===============================

Ploomber a structured error message to understand why your pipeline failed. The last few lines are a summary:

=============================== Summary (1 task) ===============================
SQLScript: clean -> SQLRelation(('my_clean_table', 'table'))
=============================== DAG build failed ===============================

By looking at the summary we know our pipeline failed because one task crashed (clean). If we scroll up we’ll see a
header section:

--------- SQLScript: clean -> SQLRelation(('my_clean_table', 'table')) ---------
-------------- /Users/Edu/dev/projects-ploomber/testing/clean.sql --------------

Each task displays its traceback on a separate section. Since only one task failed in our example we only see one task
traceback.

At the end of this task traceback, we see the following line:

Exception when running on_finish for task "clean":

Now we know that the on_finish hook crashed. If we go up a few lines up:

2.3. User Guide 63

ploomber, Release 0.23.1

assert not nulls_in_columns(client, ['score', 'age'], product)
AssertionError

That tells me the exact test that failed! Pipelines can get very large; it helps a lot to have a structured error message that
tells us what failed and where it happened. Our take away from the error message is: “the pipeline building process
failed because the on_finish hook in the clean task raised an exception in certain assertion”. That’s much better
than either “the pipeline failed” or “this line raised an exception”.

Let’s fix our pipeline and add the WHERE clause again:

[7]: path = Path('clean.sql')
new_code = path.read_text() + 'WHERE score is not null AND age > 0'
print(new_code)
path.write_text(new_code)

DROP TABLE IF EXISTS {{product}};

CREATE TABLE {{product}} AS
SELECT * FROM my_table
WHERE score is not null AND age > 0

[7]: 121

[8]: %%sh
ploomber build

name Ran? Elapsed (s) Percentage
--------- ------ ------------- ------------
clean True 0.017694 0.67259
dump True 0.001669 0.0634426
transform True 2.61136 99.264

Building task 'transform': 0%| | 0/3 [00:00<?, ?it/s]
Executing: 0%| | 0/5 [00:00<?, ?cell/s]
Executing: 20%| | 1/5 [00:01<00:07, 1.78s/cell]
Executing: 100%|| 5/5 [00:02<00:00, 2.34cell/s]
Building task 'transform': 100%|| 3/3 [00:02<00:00, 1.13it/s]

All good! Pipeline is running without issues again!

Test-driven development (TDD)

Writing data tests is essential for developing robust pipelines. Coding tests is simple, all we have to do is write in code
that we already have in our mind when thinking what the outcome of a script should be.

This thought process happens before we write the actual code, which means we could easily write tests even before we
write the actual code. This approach is called Test-driven development (TDD).

Following this framework has an added benefit, since we force ourselves to put in concrete terms our data expectations,
it makes easier to think how we want to get there.

Furthermore, tests also serve as documentation for us (and for others). By looking at our tests, anyone can see what our
intent is. Then by looking at the code, it will be easier to spot mismatches between our intent and our implementation.

64 Chapter 2. Index

ploomber, Release 0.23.1

Pro tip: debugging and developing tests interactively

Even though tests are usually just a few short statements, writing them in an interactive way can help you quickly
prototype your assertions. One simple trick you can use to do this is to start an interactive session and load the client
and product variables.

Let’s imagine you want to write a test for a new SQL script (but the same applies for other types of scripts). You add a
testing function, but it’s currently empty:

def my_sql_testing_function(client, product):
pass

If you run this, Ploomber will still call your function, you can start an interactive session when this happens:

def my_sql_testing_function(client, product):
from IPython import embed; embed()

Once you call ploomber build, wait for the Python prompt to show and verify you have the client and product
variables:

>>> print(client)
>>> print(product)

Where to go next

• Documentation for ploomber.testing - Handy functions for testing pipelines

• Our blog post on CI for Data Science (which includes a section on testing pipelines)

To run this locally, install Ploomber and execute: ploomber examples -n guides/debugging

Found an issue? Let us know.

Questions? Ask us on Slack.

2.3.12 Debugging

Tutorial showing techniques for debugging pipelines.

For a quick reference, click here.

Debugger basics

Skip this if you’re already familiar with the Python debugger.

A debugger is a program that helps inspect another program for debugging. Python comes with a debugger called pdb.

There are a few approaches for debugging programs. One approach is line-by-line debugging, which starts our program
in debug mode so we can easily inspect variables, move to the next line, etc.

One important concept to know when debugging is stack frame. Simply speaking, stack frames represent the state of
our code at a given level. When you write a non-trivial function, it will depend on other functions to work (yours or
from third party packages). Each function has its own stack frame which defines the variables that are available to it.

When a program fails, it can do so at different levels (i.e. a different stack frame). Let’s see a simple example:

2.3. User Guide 65

https://towardsdatascience.com/rethinking-continuous-integration-for-data-science-ebf0dfc61788
https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/debugging%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/debugging%20issue
https://ploomber.io/community/
https://docs.ploomber.io/en/latest/cookbook/debugging.html
https://docs.python.org/3/library/pdb.html

ploomber, Release 0.23.1

def reciprocal(x):
return 1/x

def reciprocal_and_multiply(x, y):
return reciprocal(x) * y

There are two places where things can go wrong in the program above: if we pass x=0, the reciprocal operation
will fail. If we pass y=None, the program fails, but it will do so in the reciprocal_and_multiply function. For this
trivial example, it’s easy to see at which level the code breaks but in a real program the source code alone is usually
not enough to know. Moving between stack frames can help you find out where the error is coming from.

Understanding error messages

Let’s take a look at our example pipeline declaration:

Content of pipeline.yaml
tasks:
- source: load.py
product:
nb: output/raw.html
train: output/train.csv
test: output/test.csv

- source: preprocess.py
product: output/clean.html

Very simple, two tasks. One loads the data and the next one preprocess it.

Let’s run the pipeline and then analyze the output:

[1]: %%sh --no-raise-error
ploomber build --force

Loading pipeline...

Building task 'load': 0%| | 0/2 [00:00<?, ?it/s]
Executing: 0%| | 0/5 [00:00<?, ?cell/s]
Executing: 20%| | 1/5 [00:01<00:07, 1.97s/cell]
Executing: 100%|| 5/5 [00:02<00:00, 2.15cell/s]
Building task 'preprocess': 50%| | 1/2 [00:02<00:02, 2.86s/it]
Executing: 0%| | 0/6 [00:00<?, ?cell/s]
Executing: 17%| | 1/6 [00:03<00:15, 3.15s/cell]
Executing: 67%| | 4/6 [00:03<00:01, 1.60cell/s]
Executing: 100%|| 6/6 [00:03<00:00, 1.57cell/s]
Building task 'preprocess': 100%|| 2/2 [00:06<00:00, 3.41s/it]

=============================== DAG build failed ===============================
----------- NotebookRunner: preprocess -> File('output/clean.html') ------------
------- /Users/Edu/dev/projects-ploomber/guides/debugging/preprocess.py --------

Exception encountered at "In [6]":

ValueError Traceback (most recent call last)

(continues on next page)

66 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

/var/folders/3h/_lvh_w_x5g30rrjzb_xnn2j80000gq/T/ipykernel_66697/1567702903.py in
→˓<module>
----> 1 my_preprocessing_function(X_train, X_test)

/var/folders/3h/_lvh_w_x5g30rrjzb_xnn2j80000gq/T/ipykernel_66697/2058553394.py in my_
→˓preprocessing_function(X_train, X_test)

2 encoder = OneHotEncoder()
3 X_train_t = encoder.fit_transform(X_train)

----> 4 X_test_t = encoder.transform(X_test)
5 return X_train_t, X_test_t

~/miniconda3/envs/projects/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.
→˓py in transform(self, X)

880 "infrequent_if_exist",
881 }

--> 882 X_int, X_mask = self._transform(
883 X,
884 handle_unknown=self.handle_unknown,

~/miniconda3/envs/projects/lib/python3.9/site-packages/sklearn/preprocessing/_encoders.
→˓py in _transform(self, X, handle_unknown, force_all_finite, warn_on_unknown)

158 " during transform".format(diff, i)
159)

--> 160 raise ValueError(msg)
161 else:
162 if warn_on_unknown:

ValueError: Found unknown categories ['d'] in column 0 during transform

ploomber.exceptions.TaskBuildError: ("Error when executing task 'preprocess'. Partially␣
→˓executed notebook available at /Users/Edu/dev/projects-ploomber/guides/debugging/
→˓output/clean.ipynb", NotebookRunner: preprocess -> File('output/clean.html'))
ploomber.exceptions.TaskBuildError: Error building task "preprocess"
=============================== Summary (1 task) ===============================
NotebookRunner: preprocess -> File('output/clean.html')
=============================== DAG build failed ===============================

Need help? https://ploomber.io/community

The summary at the bottom gives a high-level explanation:

=============================== Summary (1 task) ===============================
NotebookRunner: preprocess -> File('output/clean.html')
=============================== DAG build failed ===============================

The preprocess task failed. Go up a few lines:

ploomber.exceptions.TaskBuildError: An error occurred when calling papermil.execute_
→˓notebook, partially executed notebook with traceback available at ...

That’s useful, it tells us where we can find the partially executed notebook in case we want to take a look at it. A few
lines up:

2.3. User Guide 67

ploomber, Release 0.23.1

ValueError: Found unknown categories ['d'] in column 1 during transform

That’s the exact line that failed, if you take a look at the original error traceback, you’ll see that the actual line that
raised the exception comes from the scikit-learn library (_encoders.py file):

~/miniconda3/envs/ploomber/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.
→˓py in _transform(self, X, handle_unknown)

122 msg = ("Found unknown categories {0} in column {1}"
123 " during transform".format(diff, i))

--> 124 raise ValueError(msg)
125 else:
126 # Set the problematic rows to an acceptable value and

ValueError: Found unknown categories ['d'] in column 0 during transform

The error message provides us a lot of information: Our pipeline failed while executing task preprocess. Somewhere
in our task’s code we ran something that made scikit-learn crash.

Let’s take a look at the failing task’s source code:

Content of preprocess.py
%%
import pandas as pd
from sklearn.preprocessing import OneHotEncoder

%% tags=["parameters"]
upstream = ['load']
product = None

%%
def my_preprocessing_function(X_train, X_test):

encoder = OneHotEncoder()
X_train_t = encoder.fit_transform(X_train)
X_test_t = encoder.transform(X_test)
return X_train_t, X_test_t

%%
X_train = pd.read_csv(upstream['load']['train'])
X_test = pd.read_csv(upstream['load']['test'])

%%
my_preprocessing_function(X_train, X_test)

Our preprocess.py script is using scikit-learn’s OneHotEncoder to transform variables. The error message offers
some information but not enough to fix the issue (we don’t have a column named “0”!). There must be something
going on internally.

This is a good use case for Ploomber’s debugging capabilities.

68 Chapter 2. Index

ploomber, Release 0.23.1

Starting a debugging session

There are three ways to start a debugger:

1. Jump to the first line and start the debugger

2. (post-mortem) Let the task run and start the debugger as soon as it fails

3. (breakpoint) Jump to a specific line and start the debugger

We’ll analyze the three of them but feel free to jump to the one that’s more applicable to your use case.

Jump to the first line and start the debugger

To start a debugging session you first have to start an interactive session. To do so, run the following command in the
terminal:

ploomber interact

When it finishes setting things up, your pipeline will be available in the dag variable. This is a standard Python session,
you can execute any Python code you want.

We already know that the error is happening in the preprocess task, you can start a line-by-line debugging session
with the following command:

>>> dag['preprocess'].debug()

Here’s a replay of my debugging session (with comments):

COMMENT: I entered the command "next" a few times until I reached the failing line
ipdb>
> /var/folders/3h/_lvh_w_x5g30rrjzb_xnn2j80000gq/T/tmpbatitar6.py(45)<module>()

41 X_train = pd.read_csv(upstream['load']['train'])
42 X_test = pd.read_csv(upstream['load']['test'])
43
44 # + tags=[]

COMMENT: "--->" means that line will be executed when I send the "next" command
---> 45 my_preprocessing_function(X_train, X_test)

ipdb>
COMMENT: Same error message that we got before!
ValueError: Found unknown categories ['d'] in column 0 during transform
> /var/folders/3h/_lvh_w_x5g30rrjzb_xnn2j80000gq/T/tmpbatitar6.py(45)<module>()

41 X_train = pd.read_csv(upstream['load']['train'])
42 X_test = pd.read_csv(upstream['load']['test'])
43
44 # + tags=[]

---> 45 my_preprocessing_function(X_train, X_test)
COMMENT: I entered the "down" command to move one stack frame down (inside my_
→˓preprocessing_function)
ipdb> down
> /var/folders/3h/_lvh_w_x5g30rrjzb_xnn2j80000gq/T/tmpbatitar6.py(36)my_preprocessing_
→˓function()

34 encoder = OneHotEncoder()
35 X_train_t = encoder.fit_transform(X_train)

(continues on next page)

2.3. User Guide 69

ploomber, Release 0.23.1

(continued from previous page)

COMMENT: The line that raised the exception
---> 36 X_test_t = encoder.transform(X_test)

37 return X_train_t, X_test_t
38

COMMENT: Print X_train and X_test
ipdb> X_train
cat

0 a
1 b
2 c
ipdb> X_test
cat

0 a
1 b
2 d
COMMENT: Exit debugger with the "quit" command
ipdb> quit

Ah-ha! The encoder is fitted with a column with values a, b and c but then applied to a testing set with value d. That’s
why it’s breaking.

This is an example of how your code could be doing everything right, but your data is incompatible. How you fix this
is up to us. The important thing is that we know why things are failing.

(post-mortem) Let the task run and start the debugger as soon as it fails

Note: post-mortem debugging was improved in Ploomber 0.20, ensure have at least that version

An alternative approach is to let the program run and start the debugging session as soon as it finds an exception, this
is called post-mortem debugging.

To start a debugging session”

ploomber task {task-name} --debug

or:

ploomber build --debug

This will start the debugger as soon as the code breaks, alternatively, you can serialize the error to start the debugger
session whenever you want:

Added in Ploomber 0.20

ploomber task {task-name} --debuglater

or:

ploomber build --debuglater

Then, start the debugging session with:

dltr {task-name}.dump

70 Chapter 2. Index

ploomber, Release 0.23.1

Note: you may delete the ``{task-name}.dump`` file once you are done debugging

Important: Beware that using ``–debuglater`` will serialize all the variables, so ensure you have enough disk
space when using it, especially if running with the Parallel executor
Here’s the (commented) replay of my post-mortem debugging session:

COMMENT: I deleted a few lines for brevity
ValueError: Found unknown categories ['d'] in column 0 during transform
> /Users/Edu/miniconda3/envs/ploomber/lib/python3.6/site-packages/sklearn/preprocessing/_
→˓encoders.py(124)_transform()

122 msg = ("Found unknown categories {0} in column {1}"
123 " during transform".format(diff, i))

COMMENT: The session starts here. Not very useful because we are inside the scikit-
→˓learn package
(note the file path: site-packages/sklearn/preprocessing/_encoders.py)
--> 124 raise ValueError(msg)

125 else:
126 # Set the problematic rows to an acceptable value and

COMMENT: Let's move up
ipdb> up
> /Users/Edu/miniconda3/envs/ploomber/lib/python3.6/site-packages/sklearn/preprocessing/_
→˓encoders.py(428)transform()

426 check_is_fitted(self)
427 # validation of X happens in _check_X called by _transform

--> 428 X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
429
430 n_samples, n_features = X_int.shape

COMMENT: Still inside scikit-learn, let's move up again
ipdb> up
> /var/folders/3h/_lvh_w_x5g30rrjzb_xnn2j80000gq/T/tmp653y199s.py(36)my_preprocessing_
→˓function()

34 encoder = OneHotEncoder()
35 X_train_t = encoder.fit_transform(X_train)

COMMENT: Now are are in our task's code, same place as in the previous example
---> 36 X_test_t = encoder.transform(X_test)

37 return X_train_t, X_test_t
38

ipdb> X_train
cat

0 a
1 b
2 c
ipdb> X_test
cat

0 a
1 b
2 d
ipdb> quit

As you can see, we can use either of these two approaches.

2.3. User Guide 71

ploomber, Release 0.23.1

(breakpoint) Jump to a specific line and start the debugger

The previous example showed how we could debug a program that raises an exception. A more difficult scenario is
when our program runs without errors but we find issues in the output (e.g. charts are not displaying correctly, data file
has NAs, etc).

This is a much harder problem because we don’t know where to look at! If a bug is originated in task A it might
propagate to any downstream tasks that use the product from A as input, this is why testing is essential. By explicitly
checking our data expectations, we increase the chance of catching errors at the source, rather than in a downstream
task.

When it happens (and trust me, it will), we recommend you to follow a recursive approach: Once you detect the error,
the first question to answer is: Which task produced this output? Once you know that, start a line-by-line debugging
session (post-mortem won’t work because there is no exception!), and carefully check variables to see if you can spot
the error.

If everything looks correct, go to all upstream tasks and repeat this process. You can do this from the command line.

First, start an interactive session from the terminal:

ploomber interactive

Then debug the task that produced the buggy output:

>>> dag['buggy_task'].debug()

If that’s not enough, check upstream tasks. To find upstream tasks, use task.upstream:

>>> dag['buggy_task'].upstream

If you have a hypothesis of where the error might be. You can insert a breakpoint in your task’s source code to start a
debugging session at any given point:

buggy_task.py

some code
...
...

breakpoint: this is where I think the bug is...
import pdb; pdb.set_trace()

more code
...
...

Then start a post-mortem session. The debugger will start at the line where you inserted the breakpoint.

72 Chapter 2. Index

ploomber, Release 0.23.1

Using the CLI to check if we fixed the bug

In a real scenario, we might try a few things before we find bug fix. To quickly iterate over candidate solutions, we’d
like to check if the applied change makes our pipeline not to throw an error. This is where Ploomber’s incremental
builds come in handy.

If we narrowed down the error to a specific task, we can apply changes and quickly check if the new code runs correctly
by just running that task:

ploomber task {task-name}

If the exception happens in task B, but the solution has to be implemented in task A (where A is an upstream dependency
of B), then we have to make sure that we run A and B to verify the fix. A full end-to-end run is wasteful but so is an
incremental run if B has many downstream tasks. For testing purposes, we just care about things going well until ``B``.
This is a good use of a partial build: it will run all tasks until it reaches a selected task (by default, it will still skip
up-to-date tasks). In our case:

ploomber build --partially B

Letting our pipeline fail under unforeseen circumstances

The error in our program is of particular interest because it posits a common scenario: our program is correct but still
failed due to unforeseen circumstances (unexpected data properties). Although these bugs challenge our assumptions
about input data, fixing the error is just as important as explaining why we fixed the way we did it.

Picture this: we decide to drop all observations that contain the unexpected value (d), now our pipeline runs correctly.
A few months later, we receive new data so we run the pipeline again, but we run into the same issue because of a new
unexpected value (say, e).

We could argue that one solution would be to drop all unexpected values. Is this the best approach? Dropping observa-
tions silently is dangerous, as they might contain helpful information for our analysis. If we bury a drop=True piece
of code in a pipeline with dozens of files, we will cause a lot of trouble to someone (which could be us) in the future.
As we mentioned in the previous guide: explicitly stating our data expectations is the way to move forward.

If we decide dropping d is a reasonable choice, we can encode our new data expectations in the upstream task testing
function (because that’s the task that supplies input data). Let’s recall how our pipeline looks like:

Content of pipeline.yaml
tasks:
- source: load.py
product:
nb: output/raw.html
train: output/train.csv
test: output/test.csv

- source: preprocess.py
product: output/clean.html

load supplies input for preprocess. Our testing function for the load task would look like this:

def test_load(product):
train = pd.read_csv(str(product['train']))
test = pd.read_csv(str(product['test']))

NOTE: these are the expected values in the cat column
(continues on next page)

2.3. User Guide 73

ploomber, Release 0.23.1

(continued from previous page)

we expect value 'd' in the testing set and we'll
drop it during preprocessing. Any other unexpected
values will raise an exception here so we have the
chance to decide what to do with it
assert set(train['cat'].unique()) == {'a', 'b', 'c'}
assert set(test['cat'].unique()) == {'a', 'b', 'c', 'd'}

The comment should actually be part of the testing function, without it, there is no context to understand why are we
testing such a specific condition.

Debugging (templated) SQL scripts

So far, we’ve discussed how to debug Python scripts, but SQL scripts can also fail. In a previous guide, we showed
how templated SQL scripts help us write more concise SQL code, but this comes with a cost. Relying too much on
templating makes our templated source code short but hard to read. If your database complains about syntax errors
when executing SQL tasks, chances are, the errors is coming from incorrect templating logic. One good first debugging
step is to take a look at the rendered code. You can do so from the command line:

ploomber task {task-name} --source

Apart from looking at rendered code, there isn’t much to say about debugging SQL scripts because there are no inter-
active debuggers. The best we can do is to organize our scripts in a clear way to make it easy to spot errors.

Where to go next

• pdb documentation

To run this locally, install Ploomber and execute: ploomber examples -n guides/versioning

Found an issue? Let us know.

Questions? Ask us on Slack.

2.3.13 Versioning

Note: This feature requires Ploomber 0.17.1 or higher.

A tutorial showing how to version pipeline products.

Although Ploomber is not a data versioning solution, it offers a simple way to organize pipeline artifacts via placehold-
ers. Note that this requires your project to be in a git repository.

74 Chapter 2. Index

https://docs.python.org/3/library/pdb.html
https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/versioning%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/versioning%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

Using {{git}}

Let’s look at the first example, which uses the {{git}} placeholder:

Content of pipeline.git.yaml
tasks:
- source: tasks/load.py
product:
nb: 'output/{{git}}/load.html'
data: 'output/{{git}}/data.csv'

- source: tasks/plot.py
product:
nb: 'output/{{git}}/plot.html'

You can see that both tasks use {{git}}. When Ploomber executes the pipeline, it will replace the placeholder using
the following order:

1. If currently at the tip of the branch, return the branch name

2. If the current commit has a tag, return the tag name

3. Otherwise, return the hash for the current commit (appending -dirty if there are uncommitted changes)

Let’s see how it works:

[1]: from pathlib import Path

from ploomber.spec import DAGSpec

[2]: dag = DAGSpec('pipeline.git.yaml').to_dag()
dag['load'].product['nb']

[2]: File('output/master/load.html')

We can see the product will be stored in the output/master directory, {{git}} is resolved to master since we’re at
the tip of such branch.

Using {{git_hash}}

The {{git_hash}} placeholder is similar to {{git}}, except it doesn’t return the branch name, the rules are as follows:

1. If the current commit has a tag, return the tag name

2. Otherwise, return the hash for the current commit (appending -dirty if there are uncommitted changes)

This is how our sample pipeline.git_hash.yaml looks like:

Content of pipeline.git_hash.yaml
tasks:
- source: tasks/load.py
product:
nb: 'output/{{git_hash}}/load.html'
data: 'output/{{git_hash}}/data.csv'

- source: tasks/plot.py
(continues on next page)

2.3. User Guide 75

https://mirrors.edge.kernel.org/pub/software/scm/git/docs/gitglossary.html#def_dirty
https://mirrors.edge.kernel.org/pub/software/scm/git/docs/gitglossary.html#def_dirty

ploomber, Release 0.23.1

(continued from previous page)

product:
nb: 'output/{{git_hash}}/plot.html'

[3]: dag = DAGSpec('pipeline.git_hash.yaml').to_dag()
dag['load'].product['nb']

[3]: File('output/62a3494-dirty/load.html')

This time, the product will be stored in a directory with the hash of the current commit.

Adding the current timestamp with {{now}}

Alternatively, you can use the {{now}} placeholder, which doesn’t require your project to be in a git repository and
will resolve to the current timestamp:

Content of pipeline.now.yaml
tasks:
- source: tasks/load.py
product:
nb: 'output/{{now}}/load.html'
data: 'output/{{now}}/data.csv'

- source: tasks/plot.py
product:
nb: 'output/{{now}}/plot.html'

[4]: dag = DAGSpec('pipeline.now.yaml').to_dag()

path = Path(dag['load'].product['nb']).relative_to(Path().resolve())
print(path)

output/2022-03-26T17:00:38.060493/load.html

You can see that the load.html file will to into a folder with the timestamp computed when running this example.

Using placeholders in selected tasks

You can selectively choose which tasks to organize based on the git repository commit, the following example only
uses the {{git}} placeholder in the last task:

Content of pipeline.partial.yaml
tasks:
- source: tasks/load.py
product:
nb: 'output/load.html'
data: 'output/data.csv'

- source: tasks/plot.py
product:
nb: 'output/{{git}}/plot.html'

76 Chapter 2. Index

ploomber, Release 0.23.1

[5]: dag = DAGSpec('pipeline.partial.yaml').to_dag()
dag['load'].product['nb']

[5]: File('output/load.html')

[6]: dag['plot'].product['nb']

[6]: File('output/master/plot.html')

Here, you can see that the product of the load task goes to output/, while the output of plot goes to output/master/

Using an env.yaml

If you’re using an env.yaml file, you can still use the placeholders:

env.yaml
directory: '{{git}}' # or '{{git_hash}}'

Then add references to {{directory}} in your pipeline.yaml:

pipeline.yaml
tasks:
- source: tasks/load.py
product:
nb: 'output/{{directory}}/load.html'
data: 'output/{{directory}}/data.csv'

To run this locally, install Ploomber and execute: ploomber examples -n guides/logging

Found an issue? Let us know.

Questions? Ask us on Slack.

2.3.14 Logging

Tutorial showing how to add logging to a pipeline.

Sample pipeline

The pipeline we’ll be using for this guide contains two tasks (a script and a function):

Content of basic/pipeline.yaml
tasks:
- source: script.py
product: output/nb-log.html
papermill_params:
log_output: True

- source: tasks.function
product: output/fn-log.txt

Note that the script task contains:

2.3. User Guide 77

https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/logging%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/logging%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

papermill_params:
log_output: True

This extra configuration is required on each script/notebook task in your pipeline to enable logging. The code on each
task isn’t important; they contain a for loop and log a message on each iteration. Let’s see it in action:

[1]: %%sh
cd basic
ploomber build --log info --force

Loading pipeline...
name Ran? Elapsed (s) Percentage
-------- ------ ------------- ------------
script True 4.66689 60.8412
function True 3.00372 39.1588

WARNING:traitlets:Kernel Provisioning: The 'local-provisioner' is not found. This is␣
→˓likely due to the presence of multiple jupyter_client distributions and a previous␣
→˓distribution is being used as the source for entrypoints - which does not include
→˓'local-provisioner'. That distribution should be removed such that only the version-
→˓appropriate distribution remains (version >= 7). Until then, a 'local-provisioner'␣
→˓entrypoint will be automatically constructed and used.
The candidate distribution locations are: ['/workspaces/projects/venv/lib/python3.8/site-
→˓packages/jupyter_client-7.3.2.dist-info']
INFO:blib2to3.pgen2.driver:Generating grammar tables from /workspaces/projects/venv/lib/
→˓python3.8/site-packages/blib2to3/Grammar.txt
INFO:blib2to3.pgen2.driver:Writing grammar tables to /home/codespace/.cache/black/22.3.0/
→˓Grammar3.8.13.final.0.pickle
INFO:blib2to3.pgen2.driver:Writing failed: [Errno 2] No such file or directory: '/home/
→˓codespace/.cache/black/22.3.0/tmp1j9p6bb9'
INFO:blib2to3.pgen2.driver:Generating grammar tables from /workspaces/projects/venv/lib/
→˓python3.8/site-packages/blib2to3/PatternGrammar.txt
INFO:blib2to3.pgen2.driver:Writing grammar tables to /home/codespace/.cache/black/22.3.0/
→˓PatternGrammar3.8.13.final.0.pickle
INFO:blib2to3.pgen2.driver:Writing failed: [Errno 2] No such file or directory: '/home/
→˓codespace/.cache/black/22.3.0/tmp2rs4570f'
INFO:ploomber.dag.dag:Building DAG DAG("basic")
Building task 'script': 0%| | 0/2 [00:00<?, ?it/s]INFO:ploomber.tasks.abc.
→˓NotebookRunner:Starting execution: NotebookRunner: script -> File('output/nb-log.html')
INFO:papermill:Input Notebook: /tmp/tmp_odbqsk5.ipynb
INFO:papermill:Output Notebook: /workspaces/projects/guides/logging/basic/output/nb-log.
→˓ipynb

Executing: 0%| | 0/6 [00:00<?, ?cell/s]INFO:papermill:Executing notebook with␣
→˓kernel: python3
INFO:papermill:Executing Cell 1---------------------------------------
INFO:papermill:Ending Cell 1--

Executing: 17%| | 1/6 [00:01<00:05, 1.02s/cell]INFO:papermill:Executing Cell 2--
→˓-------------------------------------
INFO:papermill:Ending Cell 2--
INFO:papermill:Executing Cell 3---------------------------------------
INFO:papermill:Ending Cell 3--
INFO:papermill:Executing Cell 4---------------------------------------

(continues on next page)

78 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

INFO:papermill:Ending Cell 4--
INFO:papermill:Executing Cell 5---------------------------------------
INFO:papermill:Ending Cell 5--
INFO:papermill:Executing Cell 6---------------------------------------
INFO:papermill:INFO:__main__:[script log] Finished step 1...

INFO:papermill:INFO:__main__:[script log] Finished step 2...

INFO:papermill:INFO:__main__:[script log] Finished step 3...

INFO:papermill:INFO:__main__:[script log] Done.

INFO:papermill:Ending Cell 6--

Executing: 100%|| 6/6 [00:04<00:00, 1.40cell/s]
INFO:ploomber.tasks.abc.NotebookRunner:Done. Operation took 4.7 seconds
Building task 'function': 50%| | 1/2 [00:04<00:04, 4.67s/it]INFO:ploomber.tasks.
→˓abc.PythonCallable:Starting execution: PythonCallable: function -> File('output/fn-log.
→˓txt')
INFO:tasks:[function log] Finished step 1...
INFO:tasks:[function log] Finished step 2...
INFO:tasks:[function log] Finished step 3...
INFO:tasks:[function log] Done.
INFO:ploomber.tasks.abc.PythonCallable:Done. Operation took 3.0 seconds
Building task 'function': 100%|| 2/2 [00:07<00:00, 3.85s/it]
INFO:ploomber.dag.dag: DAG report:
name Ran? Elapsed (s) Percentage
-------- ------ ------------- ------------
script True 4.66689 60.8412
function True 3.00372 39.1588

We can see that the logging statements appear in the console. If you want to take a look at the code, click here.

Why not print?

Note that the snippets above use the logging module instead of print. Although print is a quick and easy way to
display messages in the console, the logging module is more flexible. Hence, it is the recommended option.

2.3. User Guide 79

https://github.com/ploomber/projects/tree/master/guides/logging/basic

ploomber, Release 0.23.1

Logging to a file

It’s common to send all your log records to a file. You can do so with the --log-file/-F option:

ploomber build --log info --log-file my.log

Logging to a file from Python

Alternatively, you can configure logging from Python, which gives you more flexibility:

[2]: # you may store the contents of this cell in a .py file and then call it from the␣
→˓command line
e.g., python run_pipeline.py
import logging
from pathlib import Path
import sys

from ploomber.executors import Serial
from ploomber.spec import DAGSpec

if Path('my.log').exists():
Path('my.log').unlink()

logging.basicConfig(filename='my.log', format='%(levelname)s:%(message)s', level=logging.
→˓INFO)

make sure we can import basic/tasks.py since basic/pipeline.yaml uses it
sys.path.append('basic')

dag = DAGSpec('basic/pipeline.yaml').to_dag()
dag.build(force=True)

0%| | 0/2 [00:00<?, ?it/s]

Executing: 0%| | 0/6 [00:00<?, ?cell/s]

[2]: name Ran? Elapsed (s) Percentage
-------- ------ ------------- ------------
script True 4.76759 61.3428
function True 3.00445 38.6572

Let’s look at the file contents:

[3]: print(Path('my.log').read_text())

INFO:Generating grammar tables from /workspaces/projects/venv/lib/python3.8/site-
→˓packages/blib2to3/Grammar.txt
INFO:Writing grammar tables to /home/codespace/.cache/black/22.3.0/Grammar3.8.13.final.0.
→˓pickle
INFO:Writing failed: [Errno 2] No such file or directory: '/home/codespace/.cache/black/
→˓22.3.0/tmpeca0cxtc'
INFO:Generating grammar tables from /workspaces/projects/venv/lib/python3.8/site-
→˓packages/blib2to3/PatternGrammar.txt
INFO:Writing grammar tables to /home/codespace/.cache/black/22.3.0/PatternGrammar3.8.13.
→˓final.0.pickle

(continues on next page)

80 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

INFO:Writing failed: [Errno 2] No such file or directory: '/home/codespace/.cache/black/
→˓22.3.0/tmp3djgccxy'
INFO:Building DAG DAG("basic")
INFO:Starting execution: NotebookRunner: script -> File('basic/output/nb-log.html')
INFO:Input Notebook: /tmp/tmp1y05qp_7.ipynb
INFO:Output Notebook: /workspaces/projects/guides/logging/basic/output/nb-log.ipynb
INFO:Executing notebook with kernel: python3
INFO:Executing Cell 1---------------------------------------
INFO:Ending Cell 1--
INFO:Executing Cell 2---------------------------------------
INFO:Ending Cell 2--
INFO:Executing Cell 3---------------------------------------
INFO:Ending Cell 3--
INFO:Executing Cell 4---------------------------------------
INFO:Ending Cell 4--
INFO:Executing Cell 5---------------------------------------
INFO:Ending Cell 5--
INFO:Executing Cell 6---------------------------------------
INFO:INFO:__main__:[script log] Finished step 1...

INFO:INFO:__main__:[script log] Finished step 2...

INFO:INFO:__main__:[script log] Finished step 3...

INFO:INFO:__main__:[script log] Done.

INFO:Ending Cell 6--
INFO:Done. Operation took 4.8 seconds
INFO:Starting execution: PythonCallable: function -> File('basic/output/fn-log.txt')
INFO:[function log] Finished step 1...
INFO:[function log] Finished step 2...
INFO:[function log] Finished step 3...
INFO:[function log] Done.
INFO:Done. Operation took 3.0 seconds
INFO: DAG report:
name Ran? Elapsed (s) Percentage
-------- ------ ------------- ------------
script True 4.76759 61.3428
function True 3.00445 38.6572

Controlling logging level

The Python’s logging module allows you to filter messages depending on their priority. For example, when running
your pipeline, you may only want to display regular messages, but you may allow regular and debugging messages
for more granularity when debugging. Since Ploomber runs tasks differently depending on their type (i.e., functions
vs. scripts/notebooks), controlling the logging level requires a bit of extra work. Let’s use the same pipeline in the
parametrized directory:

[4]: %%sh
cd parametrized

(continues on next page)

2.3. User Guide 81

https://docs.python.org/3/library/logging.html

ploomber, Release 0.23.1

(continued from previous page)

ploomber build --log info --env--logging_level info --force

Loading pipeline...
name Ran? Elapsed (s) Percentage
-------- ------ ------------- ------------
script True 4.49249 59.9239
function True 3.0045 40.0761

WARNING:traitlets:Kernel Provisioning: The 'local-provisioner' is not found. This is␣
→˓likely due to the presence of multiple jupyter_client distributions and a previous␣
→˓distribution is being used as the source for entrypoints - which does not include
→˓'local-provisioner'. That distribution should be removed such that only the version-
→˓appropriate distribution remains (version >= 7). Until then, a 'local-provisioner'␣
→˓entrypoint will be automatically constructed and used.
The candidate distribution locations are: ['/workspaces/projects/venv/lib/python3.8/site-
→˓packages/jupyter_client-7.3.2.dist-info']
INFO:blib2to3.pgen2.driver:Generating grammar tables from /workspaces/projects/venv/lib/
→˓python3.8/site-packages/blib2to3/Grammar.txt
INFO:blib2to3.pgen2.driver:Writing grammar tables to /home/codespace/.cache/black/22.3.0/
→˓Grammar3.8.13.final.0.pickle
INFO:blib2to3.pgen2.driver:Writing failed: [Errno 2] No such file or directory: '/home/
→˓codespace/.cache/black/22.3.0/tmp8s6jihtc'
INFO:blib2to3.pgen2.driver:Generating grammar tables from /workspaces/projects/venv/lib/
→˓python3.8/site-packages/blib2to3/PatternGrammar.txt
INFO:blib2to3.pgen2.driver:Writing grammar tables to /home/codespace/.cache/black/22.3.0/
→˓PatternGrammar3.8.13.final.0.pickle
INFO:blib2to3.pgen2.driver:Writing failed: [Errno 2] No such file or directory: '/home/
→˓codespace/.cache/black/22.3.0/tmp2yj6e00b'
INFO:ploomber.dag.dag:Building DAG DAG("parametrized")
Building task 'script': 0%| | 0/2 [00:00<?, ?it/s]INFO:ploomber.tasks.abc.
→˓NotebookRunner:Starting execution: NotebookRunner: script -> File('output/nb-log.html')
INFO:papermill:Input Notebook: /tmp/tmprwq9ox1n.ipynb
INFO:papermill:Output Notebook: /workspaces/projects/guides/logging/parametrized/output/
→˓nb-log.ipynb

Executing: 0%| | 0/6 [00:00<?, ?cell/s]INFO:papermill:Executing notebook with␣
→˓kernel: python3
INFO:papermill:Executing Cell 1---------------------------------------
INFO:papermill:Ending Cell 1--

Executing: 17%| | 1/6 [00:00<00:04, 1.12cell/s]INFO:papermill:Executing Cell 2--
→˓-------------------------------------
INFO:papermill:Ending Cell 2--
INFO:papermill:Executing Cell 3---------------------------------------
INFO:papermill:Ending Cell 3--
INFO:papermill:Executing Cell 4---------------------------------------
INFO:papermill:Ending Cell 4--
INFO:papermill:Executing Cell 5---------------------------------------
INFO:papermill:Ending Cell 5--
INFO:papermill:Executing Cell 6---------------------------------------
INFO:papermill:INFO:__main__:[script log] Finished step 1...

INFO:papermill:INFO:__main__:[script log] Finished step 2...
(continues on next page)

82 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

INFO:papermill:INFO:__main__:[script log] Finished step 3...

INFO:papermill:INFO:__main__:[script log] Done.

INFO:papermill:Ending Cell 6--

Executing: 100%|| 6/6 [00:04<00:00, 1.44cell/s]
INFO:ploomber.tasks.abc.NotebookRunner:Done. Operation took 4.5 seconds
Building task 'function': 50%| | 1/2 [00:04<00:04, 4.49s/it]INFO:ploomber.tasks.
→˓abc.PythonCallable:Starting execution: PythonCallable: function -> File('output/fn-log.
→˓txt')
INFO:tasks:[function log] Finished step 1...
INFO:tasks:[function log] Finished step 2...
INFO:tasks:[function log] Finished step 3...
INFO:tasks:[function log] Done.
INFO:ploomber.tasks.abc.PythonCallable:Done. Operation took 3.0 seconds
Building task 'function': 100%|| 2/2 [00:07<00:00, 3.76s/it]
INFO:ploomber.dag.dag: DAG report:
name Ran? Elapsed (s) Percentage
-------- ------ ------------- ------------
script True 4.49249 59.9239
function True 3.0045 40.0761

Let’s now run the pipeline but switch the logging level to debug, this will print the records we saw above, plus the ones
with debug level:

[5]: %%sh
cd parametrized
ploomber build --log debug --env--logging_level debug --force

Loading pipeline...
name Ran? Elapsed (s) Percentage
-------- ------ ------------- ------------
script True 4.47259 59.8168
function True 3.00456 40.1832

DEBUG:ploomber.spec.dagspec:DAGSpec enviroment:
EnvDict({'cwd': '/workspaces/.../parametrized', 'git': 'master', 'git_hash': '1738307-
→˓dirty', 'here': '/workspaces/.../parametrized', ...})
DEBUG:ploomber.spec.dagspec:Expanded DAGSpec:
{ 'tasks': [{ 'papermill_params': {'log_output': True},

'params': {'logging_level': '{{logging_level}}'},
'product': 'output/nb-log.html',
'source': 'script.py'},

{ 'params': {'logging_level': '{{logging_level}}'},
'product': 'output/fn-log.txt',
'source': 'tasks.function'}]}

WARNING:traitlets:Kernel Provisioning: The 'local-provisioner' is not found. This is␣
→˓likely due to the presence of multiple jupyter_client distributions and a previous␣
→˓distribution is being used as the source for entrypoints - which does not include
→˓'local-provisioner'. That distribution should be removed such that only the version-
→˓appropriate distribution remains (version >= 7). Until then, a 'local-provisioner'␣
→˓entrypoint will be automatically constructed and used. (continues on next page)

2.3. User Guide 83

ploomber, Release 0.23.1

(continued from previous page)

The candidate distribution locations are: ['/workspaces/projects/venv/lib/python3.8/site-
→˓packages/jupyter_client-7.3.2.dist-info']
DEBUG:ploomber.tasks.abc.NotebookRunner:Setting "script" status to TaskStatus.
→˓WaitingRender
DEBUG:ploomber.tasks.abc.PythonCallable:Setting "function" status to TaskStatus.
→˓WaitingRender
DEBUG:ploomber.spec.dagspec:Extracted upstream dependencies for task script: None
DEBUG:ploomber.spec.dagspec:Extracted upstream dependencies for task function: None
INFO:blib2to3.pgen2.driver:Generating grammar tables from /workspaces/projects/venv/lib/
→˓python3.8/site-packages/blib2to3/Grammar.txt
INFO:blib2to3.pgen2.driver:Writing grammar tables to /home/codespace/.cache/black/22.3.0/
→˓Grammar3.8.13.final.0.pickle
INFO:blib2to3.pgen2.driver:Writing failed: [Errno 2] No such file or directory: '/home/
→˓codespace/.cache/black/22.3.0/tmp55q_ywf2'
INFO:blib2to3.pgen2.driver:Generating grammar tables from /workspaces/projects/venv/lib/
→˓python3.8/site-packages/blib2to3/PatternGrammar.txt
INFO:blib2to3.pgen2.driver:Writing grammar tables to /home/codespace/.cache/black/22.3.0/
→˓PatternGrammar3.8.13.final.0.pickle
INFO:blib2to3.pgen2.driver:Writing failed: [Errno 2] No such file or directory: '/home/
→˓codespace/.cache/black/22.3.0/tmpvxyhyfii'
INFO:ploomber.dag.dag:Building DAG DAG("parametrized")
Building task 'script': 0%| | 0/2 [00:00<?, ?it/s]INFO:ploomber.tasks.abc.
→˓NotebookRunner:Starting execution: NotebookRunner: script -> File('output/nb-log.html')
INFO:papermill:Input Notebook: /tmp/tmpue38o2oe.ipynb
INFO:papermill:Output Notebook: /workspaces/projects/guides/logging/parametrized/output/
→˓nb-log.ipynb

Executing: 0%| | 0/6 [00:00<?, ?cell/s]INFO:papermill:Executing notebook with␣
→˓kernel: python3
INFO:papermill:Executing Cell 1---------------------------------------
INFO:papermill:Ending Cell 1--

Executing: 17%| | 1/6 [00:00<00:04, 1.13cell/s]INFO:papermill:Executing Cell 2--
→˓-------------------------------------
INFO:papermill:Ending Cell 2--
INFO:papermill:Executing Cell 3---------------------------------------
INFO:papermill:Ending Cell 3--
INFO:papermill:Executing Cell 4---------------------------------------
INFO:papermill:Ending Cell 4--
INFO:papermill:Executing Cell 5---------------------------------------
INFO:papermill:Ending Cell 5--
INFO:papermill:Executing Cell 6---------------------------------------
INFO:papermill:DEBUG:__main__:[script log] This is a message for debugging

INFO:papermill:INFO:__main__:[script log] Finished step 1...

INFO:papermill:INFO:__main__:[script log] Finished step 2...

INFO:papermill:INFO:__main__:[script log] Finished step 3...

INFO:papermill:INFO:__main__:[script log] Done.

(continues on next page)

84 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

INFO:papermill:Ending Cell 6--

Executing: 100%|| 6/6 [00:04<00:00, 1.44cell/s]
INFO:ploomber.tasks.abc.NotebookRunner:Done. Operation took 4.5 seconds
Building task 'function': 50%| | 1/2 [00:04<00:04, 4.47s/it]INFO:ploomber.tasks.
→˓abc.PythonCallable:Starting execution: PythonCallable: function -> File('output/fn-log.
→˓txt')
INFO:tasks:[function log] Finished step 1...
INFO:tasks:[function log] Finished step 2...
INFO:tasks:[function log] Finished step 3...
INFO:tasks:[function log] Done.
INFO:ploomber.tasks.abc.PythonCallable:Done. Operation took 3.0 seconds
Building task 'function': 100%|| 2/2 [00:07<00:00, 3.75s/it]
INFO:ploomber.dag.dag: DAG report:
name Ran? Elapsed (s) Percentage
-------- ------ ------------- ------------
script True 4.47259 59.8168
function True 3.00456 40.1832

To get the code for the previous example, click here.

Implementation details

To keep the tutorial short, we overlooked some technical details. However, if you want to customize logging, they are
essential to know.

Function tasks and sub-processes

By default, Ploomber runs function tasks in a child process. However, beginning on version 3.8, Python 3.8 switched
to use spawn instead of fork on macOS, this implies that child processes do not inherit the logging configuration of
their parents. That’s why you must configure a logger inside the function’s body:

import logging

def some_task(product):
the following line is required on Python>=3.8 if using macOS
logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(__name__)

to log a message, call logger.info
logger.info('Some message')

2.3. User Guide 85

https://github.com/ploomber/projects/tree/master/guides/logging/parametrized
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods

ploomber, Release 0.23.1

Scripts and notebooks

Unlike function tasks, which can run in the same process as Ploomber or in a child process, scripts and notebooks
execute independently. Hence, any logging configuration made in the main process is lost, and We have to configure a
separate logger at the top of the script/notebook.

Parallel execution

Logging is currently unavailable when using the Parallel executor.

To run this locally, install Ploomber and execute: ploomber examples -n guides/serialization

Found an issue? Let us know.

Questions? Ask us on Slack.

2.3.15 Serialization

Tutorial explaining how the serializer and unserializer fields in a pipeline.yaml file work.

Incremental builds allow Ploomber to skip tasks whose source code hasn’t changed; each task must save their products to
disk to enable such a feature. However, there are some cases when we don’t want our pipeline to perform disk operations.
For example, if we’re going to deploy our pipeline, eliminating disk operations reduces runtime considerably.

To enable a pipeline to work in both disk-based and in-memory scenarios, we can declare a serializer and
unzerializer in our pipeline declaration, effectively separating our task’s logic from the read/write logic.

Note that this only applies to function tasks; other tasks are unaffected by the serializer/unserializer configura-
tion.

Built-in pickle serialization

The easiest way to get started is to use the built-in serializer and unserializer, which use the pickle module.

Let’s see an example; the following pipeline has two tasks. The first one generates a dictionary, and the second one
creates two dictionaries. Since we are using the pickle-based serialization, each dictionary is saved in the pickle binary
format:

Content of simple.yaml
serializer: ploomber.io.serializer_pickle
unserializer: ploomber.io.unserializer_pickle

tasks:
- source: tasks.first
product: output/one_dict

- source: tasks.second
product:

another: output/another_dict
final: output/final_dict

Let’s take a look at the task’s source code:

86 Chapter 2. Index

https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/serialization%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=guides/serialization%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

Content of tasks.py
def first():

return dict(a=1, b=2)

def second(upstream):
first = upstream['first']
another = dict(a=first['b'] + 1, b=first['a'] + 1)
final = dict(a=100, b=200)
return dict(another=another, final=final)

Since we configured a serializer and unserializer, function tasks must return their outpues instead of saving
them to disk in the function’s body.

first does not have any upstream dependencies and returns a dictionary. second has the previous task as dependency
and returns two dictionaries. Note that the keys in the returned dictionary must match the names of the products declared
in pipeline.yaml (another, final).

Let’s now run the pipeline.

[1]: %%sh
ploomber build --entry-point simple.yaml --force

name Ran? Elapsed (s) Percentage
------ ------ ------------- ------------
first True 0.001281 42.9433
second True 0.001702 57.0567

Building task 'second': 100%|| 2/2 [00:06<00:00, 3.39s/it]

The pickle format has important security concerns, remember only to unpickle data you trust.

Custom serialization logic

We can also define our own serialization logic, by using the @serializer, and @unserializer decorators. Let’s
replicate what our pickle-based serializer/unserializer is doing as an example:

Content of custom.py
from pathlib import Path
import pickle

from ploomber.io import serializer, unserializer

@serializer()
def my_pickle_serializer(obj, product):

Path(product).write_bytes(pickle.dumps(obj))

@unserializer()
def my_pickle_unserializer(product):

return pickle.loads(Path(product).read_bytes())

A @serializer function must take two arguments: the object to serializer and the product object (taken from the task
declaration). The @unserializermust take a single argument (the product to unserializer), and return the unserializer

2.3. User Guide 87

https://docs.python.org/3/library/pickle.html

ploomber, Release 0.23.1

object.

Let’s modify our original pipeline to use this serializer/unserializer:

Content of custom.yaml
serializer: custom.my_pickle_serializer
unserializer: custom.my_pickle_unserializer

tasks:
- source: tasks.first
product: output/one_dict

- source: tasks.second
product:

another: output/another_dict
final: output/final_dict

[2]: %%sh
ploomber build --entry-point custom.yaml --force

name Ran? Elapsed (s) Percentage
------ ------ ------------- ------------
first True 0.001216 19.4342
second True 0.005041 80.5658

Building task 'second': 100%|| 2/2 [00:07<00:00, 3.87s/it]

Custom serialization logic based on the product’s extension

Under many circumstances, there are more suitable formats than pickle. For example, we may want to store lists or
dictionaries as JSON files and other files using pickle. The @serializer/@unserializer decorators use mapping
as the first argument to dispatch to different functions depending on the product’s extension. Let’s see an example:

Content of custom.py
from pathlib import Path
import pickle
import json

from ploomber.io import serializer, unserializer

def write_json(obj, product):
Path(product).write_text(json.dumps(obj))

def read_json(product):
return json.loads(Path(product).read_text())

@serializer({'.json': write_json})
def my_serializer(obj, product):

Path(product).write_bytes(pickle.dumps(obj))

(continues on next page)

88 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

@unserializer({'.json': read_json})
def my_unserializer(product):

return pickle.loads(Path(product).read_bytes())

Let’s modify our example pipeline. The product in the first task does not have an extension (output/one_dict),
hence, it will use pickle-based logic. However, the tasks in the second task have a .json extension, and will be saved
as JSON files.

Content of with-json.yaml
serializer: custom.my_serializer
unserializer: custom.my_unserializer

tasks:
- source: tasks.first
product: output/one_dict

- source: tasks.second
product:

another: output/another_dict.json
final: output/final_dict.json

[3]: %%sh
ploomber build --entry-point with-json.yaml --force

name Ran? Elapsed (s) Percentage
------ ------ ------------- ------------
first True 0.001193 38.5834
second True 0.001899 61.4166

Building task 'second': 100%|| 2/2 [00:06<00:00, 3.26s/it]

Let’s print the .json files to verify they’re not pickle files:

[4]: %%sh
cat output/another_dict.json

{"a": 3, "b": 2}

[5]: %%sh
cat output/final_dict.json

{"a": 100, "b": 200}

Using a fallback format

Since it’s common to have a fallback serialization format, the decorators have a fallback argument that, when
enabled, uses the pickle module when the product’s extension does not match any of the registered ones in the first
argument.

The example works the same as the previous one, except we don’t have to write our pickle-based logic.

fallback can also take the joblib or cloudpickle values. They’re similar to the pickle format but have some advan-
tages. For example, joblib produces smaller files when the serialized object contains many NumPy arrays, while
cloudpickle supports serialization of some objects that the pickle module doesn’t. To use fallback='joblib' or
fallback='cloudpickle' the corresponding module must be installed.

2.3. User Guide 89

https://github.com/joblib/joblib
https://github.com/cloudpipe/cloudpickle

ploomber, Release 0.23.1

Content of custom.py

from ploomber.io import serializer, unserializer

@serializer({'.json': write_json}, fallback=True)
def my_fallback_serializer(obj, product):

pass

@unserializer({'.json': read_json}, fallback=True)
def my_fallback_unserializer(product):

pass

Content of fallback.yaml
serializer: custom.my_fallback_serializer
unserializer: custom.my_fallback_unserializer

tasks:
- source: tasks.first
product: output/one_dict

- source: tasks.second
product:

another: output/another_dict.json
final: output/final_dict.json

[6]: %%sh
ploomber build --entry-point fallback.yaml --force

name Ran? Elapsed (s) Percentage
------ ------ ------------- ------------
first True 0.002278 56.8505
second True 0.001729 43.1495

Building task 'second': 100%|| 2/2 [00:06<00:00, 3.45s/it]

Let’s print the JSON files to verify their contents:

[7]: %%sh
cat output/another_dict.json

{"a": 3, "b": 2}

[8]: %%sh
cat output/final_dict.json

{"a": 100, "b": 200}

90 Chapter 2. Index

ploomber, Release 0.23.1

Using default serializers

Ploomber comes with a few convenient serialization functions to write more succint serializers. We can request the
use of such default serializers using the defaults argument, which takes a list of extensions:

Content of custom.py

from ploomber.io import serializer, unserializer

@serializer(fallback=True, defaults=['.json'])
def my_defaults_serializer(obj, product):

pass

@unserializer(fallback=True, defaults=['.json'])
def my_defaults_unserializer(product):

pass

Here we’re asking to dispatch .json products and use pickle for all other extensions, the same as we did for the
previous examples, except this time, we don’t have to pass the mapping argument to the decorators.

defaults support:

1. .json: the returned object must be JSON-serializable (e.g., a list or a dictionary)

2. .txt: the returned object must be a string

3. .csv: the returned object must be a pandas.DataFrame

4. .parquet: the returned object must be a pandas.DataFrame, and a parquet library should be installed (such
as pyarrow).

Content of defaults.yaml
serializer: custom.my_defaults_serializer
unserializer: custom.my_defaults_unserializer

tasks:
- source: tasks.first
product: output/one_dict

- source: tasks.second
product:

another: output/another_dict.json
final: output/final_dict.json

[9]: %%sh
ploomber build --entry-point defaults.yaml --force

name Ran? Elapsed (s) Percentage
------ ------ ------------- ------------
first True 0.001148 39.1675
second True 0.001783 60.8325

Building task 'second': 100%|| 2/2 [00:07<00:00, 3.64s/it]

Let’s print the JSON files to verify their contents:

2.3. User Guide 91

ploomber, Release 0.23.1

[10]: %%sh
cat output/another_dict.json

{"a": 3, "b": 2}

[11]: %%sh
cat output/final_dict.json

{"a": 100, "b": 200}

Wrapping up

Configuring a serializer and unserializer in your pipeline.yaml is optional, but it helps you quickly generate
a fully in-memory pipeline for serving predictions.

If you want to learn more about in-memory pipelines, check out the following guide.

For a complete example showing how to manage a training and a serving pipeline, and deploy it as a Flask API, click
here.

2.3.16 Shell tasks

Note: Click here to see a complete example

You can run shell/bash scripts as Ploomber tasks, giving you complete flexibility to execute code in a different pro-
gramming language.

Let’s say you want to use a shell script to copy a file; a sample script would look like this:

cp origin.txt target.txt

To turn that into a Ploomber shell script, you need to add placeholders for upstream dependencies and the product.
Let’s say that origin.txt was generated by a task called download and that target.txt is declared as the product
of the given task in the pipeline.yaml file, then:

cp {{upstream['download']}} {{product}}

Then, in your pipeline.yaml, add the task:

... more tasks

- source: copy.sh
product: target.txt

92 Chapter 2. Index

https://docs.ploomber.io/en/latest/deployment/online.html
https://github.com/ploomber/projects/tree/master/templates/ml-online
https://github.com/ploomber/projects/tree/master/templates/ml-online
https://github.com/ploomber/projects/tree/master/templates/shell

ploomber, Release 0.23.1

Executing source code in other programming languages

By default, Ploomber will keep track of changes to your .sh file, so it only executes it when it changes. In our previous
example, all the logic exists in the copy.sh file; however, if you’re using shell scripts to execute source in a different
programming language, say Julia, your .sh script may look like this:

julia my-script.jl input.csv output.csv

First, we add the placeholders:

julia my-script.jl {{upstream["some-task"]}} {{product}}

The script above will work, however, Ploomber won’t track changes to my-script.jl. To fix this, you can use the
resources_ option, which tells Ploomber to keep track of extra files:

... more tasks

- source: scripts/run-julia.sh
product: output.csv
params:
resources_:

julia_script: my-script.jl

Note: To learn more about the resources_ section click here..

If you wish, you can update your script, to remove the duplicated my-script.jl value:

julia {{params["resources_"]["julia_script"]}} {{upstream["task"]}} {{product}}

2.3.17 Other editors (VSCode, PyCharm, etc.)

Note: This feature requires Ploomber 0.14 or higher.

Ploomber can be entirely operated from the command-line, thus, independent of your text editor or IDE of choice.
However, Ploomber comes with a Jupyter plugin that streamlines development via the cell injection process (to learn
more about cell injection, click here).

If you’re not using Jupyter, you can still leverage the cell injection feature. Depending on your text editor/IDE capabil-
ities, you may choose one of these options:

1. Use the percent format in .py files (recommended)

2. Pair .py files with .ipynb files (recommended if your editor does not support the percent format or if you’re
running an old JupyterLab 1.x version)

3. Use .ipynb files as sources

To try out this feature, download our ml-basic example:

ploomber examples -n templates/ml-basic -o ml-basic

Then move to the ml-basic/ directory.

2.3. User Guide 93

ploomber, Release 0.23.1

Using the percent format

Note: Editors such as VSCode, PyCharm, Spyder, and Atom (via Hydrogen) support the percent format.

The percent format allows you to represent .py files as notebooks by separating cells using # %%:

%%
first cell
x = 1

%%
second cell
y = 2

The first step is to ensure that your scripts are in the percent format. You can re-format all of them with the following
command:

ploomber nb --format py:percent

If you’re following this using our ml-basic example, you can run such command, then open fit.py and see that the
cells are delimited by # %%.

Now, let’s inject the cell into each script manually:

ploomber nb --inject

If you open any of your pipeline scripts, you’ll see the injected cell. If you’re following this with our ml-basic example;
you’ll notice that after running ploomber nb --inject, the fit.py file has a few new lines:

%% tags=["injected-parameters"]
upstream = {"join": "output/join.parquet"}

product = {
"nb": "output/nb.ipynb",
"model": "output/model.pickle",

}

In our ml-basic example, fit.py depends on the join task, which implies that fit.py will use the output of join
as input. Once you inject the cell, you’ll see that Ploomber extracted the outputs of join and added them to fit.py,
now fit.py is complete, and you can run it interactively without hardcoding paths.

To test this, run ploomber build in a terminal to generate all the outputs, then open fit.py and start running the
script (if you’re on VSCode, you can click on the Run Cell button at the beginning of each cell). The following image
shows the fit.py (left) and the interactive output (right) on VSCode:

94 Chapter 2. Index

ploomber, Release 0.23.1

Important: Remember to run ploomber nb --inject whenever you change your pipeline.yaml. You can set
up a file watcher for pipeline.yaml. Click here for a VSCode extension, or here for a PyCharm example.

Note: By default, Ploomber deletes the injected cell when you save a script/notebook from Jupyter; however, if you
injected it via the ploomber nb --inject command, this is disabled, and saving the script/notebook will not remove
the injected cell.

Pairing .ipynb files

If your editor does not support the percent format, or if running and old JupyterLab 1.x version (e.g., if using
Amazon Sagemaker), you can pair .py and .ipynb files: this creates a synced .ipynb copy of each .py task.

Say you have a pipeline with .py files, to create the .ipynb ones:

ploomber nb --pair notebooks

The command above will generate .ipynb files in a notebooks/ directory, one per .py in your pipeline. If you’re
following the ml-basic example, you’ll see that a new notebooks/fit.ipynb file will appear after running the
previous command. Now, add the injected cell: ploomber nb --inject (more details in the the previous section).

Tip: Keep your repository clean by adding the .ipynb files to your .gitignore file.

Once you modify the .ipynb, you can sync their .py pairs with:

ploomber nb --sync

The following image shows the .ipynb / .py pair after running the sync command:

2.3. User Guide 95

https://ploomber.io/images/doc/editors-vscode-executed.png
https://marketplace.visualstudio.com/items?itemName=appulate.filewatcher
https://www.jetbrains.com/help/pycharm/using-file-watchers.html

ploomber, Release 0.23.1

If you’re following this using the ml-basic command, modify notebooks/fit.ipynb (e.g., add a comment in the
first cell), run ploomber nb --sync, and then open fit.py, you’ll see that the change made to the .ipynb file is
now visible in the fit.py file.

Tip: If you want the ploomber nb --sync command to run automatically before you run git push, check out the
git hooks section.

Using .ipynb as sources

As a last option, you have the option to use .ipynb files as task sources in your pipeline.yaml:

tasks:
- source: nbs/load.ipynb
product: output/report.ipynb

Keep in mind that .ipynb files are hard to manage with git, so we recommend you to use one of the alternative options
described above.

To add the injected cell, follow the instructions from the previous section.

Removing the injected cell

If you wish to remove the injected cell from all scripts/notebooks:

ploomber nb --remove

Using git hooks

Important: ploomber nb --install-hook does not work on Windows

To keep your scripts/notebooks clean, it’s a good idea to keep the injected cell out of version control.

To automate injecting/removing, you can install git hooks that automatically remove the injected cells before committing
files and inject them again after committing:

96 Chapter 2. Index

https://ploomber.io/images/doc/editors-paired.png

ploomber, Release 0.23.1

ploomber nb --install-hook

To uninstall the hooks:

ploomber nb --uninstall-hook

2.3.18 R support

Ploomber officially supports R. The same concepts that apply to Python scripts apply to R scripts; this implies that R
scripts can render as notebooks in Jupyter and the cell injection works. The only difference is how to declare upstream
dependencies:

For the R Markdown format (.Rmd):

```{r, tags=c("parameters")}
upstream = list('one_task', 'another_task')
```

If you prefer, you can also use plain R scripts:

%% tags=["parameters"]
upstream = list('one_task', 'another_task')
#

If your script doesn’t have dependencies: upstream = NULL

To read more about how Ploomber executes scripts and integrates with Jupyter, check the Jupyter Integration guide.

Configuring R environment

To run R scripts as Jupyter notebooks, you need to install Jupyter first, have an existing R installation and install the
IRkernel package.

If you are using conda and a environment.yml file to manage dependencies, keep on reading. Otherwise, read the
IRkernel installation instructions.

Setting up R and IRkernel via conda

Even if you already have R installed, it is good to isolate your environments from one project to another. conda can
install R inside your project’s environment.

Add the following lines to your environment.yaml:

name: some_project

dependencies:
...
existing conda dependencies...
- r-base
- r-irkernel
optionally add r-essentials to install commonly used R packages

- pip:
(continues on next page)

2.3. User Guide 97

https://github.com/IRkernel/IRkernel

ploomber, Release 0.23.1

(continued from previous page)

...
existing pip dependencies...
- ploomber

For more information on installing R via conda click here.

Once you update your environment.yml, re-create or update your environment.

Finally, activate the R kernel for Jupyter. If you’re using Linux or macOS:

echo "IRkernel::installspec()" | Rscript -

If using Windows, start an R session and run IRkernel::installspec() on it.

Interactive example

Click the button above to see an interactive example (no installation needed, but takes about a minute to be ready):

Example source code

2.3.19 FAQ and Glossary

Why do products have clients?

Clients exist in tasks and products because they serve different purposes. A task client manages the connection to
the database that runs your script. On the other hand, the product’s client only handles the storage of the product’s
metadata.

To enable incremental runs. Ploomber has to store the source code that generated any given product. Storing metadata
in the same database that runs your code requires a system-specific implementation. Currently, only SQLite and Post-
greSQL are supported via ploomber.products.SQLiteRelation and ploomber.products.PostgresRelation
respectively. For these two cases, task client and product client communicate to the same system (the database). Hence
they can initialize with the same client.

For any other database, we provide two alternatives; in both cases, the task’s client is different from the product’s
client. The first alternative is ploomber.products.GenericSQLRelation which represents a generic table or view
and saves metadata in a SQLite database; on this case, the task’s client is the database client (e.g., Oracle, Hive,
Snowflake) but the product’s client is a SQLite client. If you don’t need the incremental builds features, you can use
ploomber.products.SQLRelation instead which is a product with no metadata.

Which databases are supported?

The answer depends on the task to use. There are two types of database clients. ploomber.clients.
SQLAlchemyClient for SQLAlchemy compatible database and ploomber.clients.DBAPIClient for the rest (the
only requirement for DBAPIClient is a driver that implements PEP 249.

ploomber.tasks.SQLDump supports both types of clients.

ploomber.tasks.SQLScript supports both types of clients. But if you want incremental builds, you must also
configure a product client. See the section below for details.

ploomber.tasks.SQLUpload relies on pandas.to_sql to upload a local file to a database. Such method relies on
SQLAlchemy to work. Hence it only supports SQLAlchemyClient.

98 Chapter 2. Index

https://docs.anaconda.com/anaconda/user-guide/tasks/using-r-language/
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Ftemplates/spec-api-r%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/tree/master/templates/spec-api-r
https://www.python.org/dev/peps/pep-0249/

ploomber, Release 0.23.1

ploomber.tasks.PostgresCopyFrom is a faster alternative to SQLUpload when using PostgreSQL. It relies on
pandas.to_sql only to create the database, but actual data upload is done using psycopg which calls the native COPY
FROM procedure.

What are incremental builds?

When developing pipelines, we usually make small changes and want to see how the the final output looks like (e.g.,
add a feature to a model training pipeline). Incremental builds allow us to skip redundant work by only executing
tasks whose source code has changed since the last execution. To do so, Ploomber has to save the Product’s metadata.
For ploomber.products.File, it creates another file in the same location, for SQL products such as ploomber.
products.SQLRelation, a metadata backend is required, which is configured using the client parameter.

How do I specify a task with a variable number of outputs?

You must group the outputs into a single product and declare it as a directory.

• Click here to see an example.

• If you’re using serializers, click here to see an example.

Should tasks generate products?

Yes. Tasks must generate at least one product; this is typically a file but can be a table or view in a database.

If you find yourself trying to write a task that generates no outputs, consider the following options:

1. Merge the code that does not generate outputs with upstream tasks that generate outputs.

2. Use the on_finish hook to execute code after a task executes successfully (click here to learn more).

Auto reloading code in Jupyter

When you import a module in Python (e.g., from module import my_function), the system caches the code and
subsequent changes to my_funcion won’t take effect even if you run the import statement again until you restar the
kernel, which is inconvenient if you are iterating on some code stored in an external file.

To overcome such limitation, you can insert the following at the top of your notebook, before any import statements:

auto reload modules
%load_ext autoreload
%autoreload 2

Once executed, any updates to imported modules will take effect if you change the source code. Note that this feature
has some limitations.

2.3. User Guide 99

https://github.com/ploomber/projects/tree/master/cookbook/variable-number-of-products/basic
https://github.com/ploomber/projects/tree/master/cookbook/variable-number-of-products/serializer
https://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html#caveats

ploomber, Release 0.23.1

Cell tags

Scripts (with the %% separator) and notebooks support cell tags. Tags help identify cells for several purposes; the two
most common ones are:

1. Notebook parameters: Ploomber uses this cell to know where to inject parameters from pipeline.yaml. In
most cases, you don’t need to manually tag cells since Ploomber does it automatically.

2. Cell filtering: When generating reports, you may want to selectively hide specific cells from the output report.

For an example of adding cell tags, see the Parameterizing Notebooks section.

Parameterizing Notebooks

You must first parametrize the notebook by assigning the tag parameters to an initial cell when performing a notebook
task. Note that the parameters in the parameters cell are placeholders; they indicate the parameter names that your
script or notebook takes, but they are replaced values declared in your pipeline.yaml file at runtime. The only
exception is the upstream parameter, which contains a list of task dependencies.

Parameterizing .py files

For .py files, include the # %% tags=["parameters"] comment before declaring your default variables or parame-
ters.

%% tags=["parameters"]
upstream = None
product = None

Note that Ploomber is compatible with all .py formats supported by jupytext. Another common alternative is the light
format. The # + marker denotes the beginning of a cell, and # - marker indicates the end of the cell. Your cell should
look like this:

+ tags=["parameters"]
upstream = None
product = None
-

If you’re using another format, check out jupytext’s documentation.

Parameterizing .ipynb files in Jupyter

Note: This applies to JupyterLab 3.0 and higher. For more information on parameterizing notebooks in older versions,
please refer to papermill docs

To parametrize your notebooks, add a new cell at the top, then in the right sidebar, click to open the property inspector
(double gear icon). Next, hit the “Add Tag” button, type in the word parameters, and press “Enter”.

100 Chapter 2. Index

https://jupytext.readthedocs.io/en/latest/formats-scripts.html
https://papermill.readthedocs.io/en/stable/usage-parameterize.html

ploomber, Release 0.23.1

Plotting a pipeline

You can generate a plot of your pipeline with ploomber plot. It supports using D3, mermaid.js and pygraphviz as
backends to create the plot. D3 is the most straightforward option since it doesn’t require any extra dependencies, but
pygraphviz is more flexible and produces a better plot. Once installed, Ploomber will use pygraphviz, but you can
use the --backend argument in the ploomber plot command to switch between d3, mermaid, and pygraphviz.

The simplest way to install pygraphviz is to use conda, but you can also get it working with pip.

conda (simplest)

conda install pygraphviz -c conda-forge

Important: If you’re running Python 3.7.x, run: conda install 'pygraphviz<1.8' -c conda-forge

pip

graphviz cannot be installed via pip, so you must install it with another package manager, if you have brew, you can
get it with:

brew install graphviz

Note: If you don’t have brew, refer to graphviz docs for alternatives.

Once you have graphviz, you can install pygraphviz with pip:

pip install pygraphviz

Important: If you’re running Python 3.7.x, run: pip install 'pygraphviz<1.8'

2.3. User Guide 101

https://www.graphviz.org/download/

ploomber, Release 0.23.1

Can I use Ploomber in old JupyterLab 1.x versions?

Yes! Although our JupyterLab plug-in requires version 2.x, you can still use Ploomber if using the old 1.x version,
which (as of December 2021) is the case if you’re using Amazon Sagemaker. Since Ploomber is a command-line tool,
it is independent of your editor/IDE. Furthermore, you can get the same experience as JupyerLab users by using the
ploomber nb command; click here to learn more.

Multiprocessing errors on macOS and Windows

Show me the solution.

By default, Ploomber executes ploomber.tasks.PythonCallable (i.e., function tasks) in a child process using the
multiprocessing library. On macOS and Windows, Python uses the spawn method to create child processes; this isn’t
an issue if you’re running your pipeline from the command-line (i.e., ploomber build), but you’ll encounter the
following issue if running from a script:

An attempt has been made to start a new process before the current process
has finished its bootstrapping phase.

This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:

if __name__ == '__main__':
freeze_support()
...

The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.

This happens if you store a script (say run.py):

from ploomber.spec import DAGSpec

dag = DAGSpec('pipeline.yaml').to_dag()
This fails on macOS and Windows!
dag.build()

And call your pipeline with:

python run.py

There are two ways to solve this problem.

102 Chapter 2. Index

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods

ploomber, Release 0.23.1

Solution 1: Add __name__ == '__main__'

To allow correct creation of child processes using spawn, run your pipeline like this:

from ploomber.spec import DAGSpec

if __name__ == '__main__':
dag = DAGSpec('pipeline.yaml').to_dag()
calling build under this if statement allows
correct creation of child processes
dag.build()

Solution 2: Disable multiprocessing

You can disable multiprocessing in your pipeline like this:

from ploomber.spec import DAGSpec
from ploomber.executor import Serial

dag = DAGSpec('pipeline.yaml').to_dag()
overwrite executor regardless of what the pipeline.yaml
says in the 'executor' field
dag.executor = Serial(build_in_subprocess=False)

dag.build()

Glossary

1. Dotted path. A dot-separated string pointing to a Python module/class/function, e.g.
“my_module.my_function”.

2. Entry point. A location to tell Ploomber how to initialize a DAG, can be a spec file, a directory, or a dotted path

3. Hook. A function executed after a certain event happens, e.g., the task “on finish” hook executes after the task
executes successfully

4. Spec. A dictionary-like specification to initialize a DAG, usually provided via a YAML file

2.3.20 Spec API vs. Python API

There are two ways of writing pipelines with Ploomber. This document discusses the differences and how to decide
which API to use.

Data projects span a wide range of applications, from small projects requiring a few scripts to large ones requiring
greater flexibility.

If you’re getting started, the Spec API is recommended. The Spec API is flexible enough to handle many common
use cases without requiring you to learn a Python API, you can get started quickly and get pretty far using some of the
advanced feature, check out the full documentation for details.

However, the Spec API is static, meaning that your pipeline.yaml completely describes your pipeline’s structure.
Under some circumstances, you may want your pipeline to be more “dynamic.” For example, you may use some input
parameters and create a “pipeline factory,” which is a function that takes those input parameters and creates a pipeline,

2.3. User Guide 103

ploomber, Release 0.23.1

allowing you to morph the specifics of your pipeline (number of tasks, dependencies among them, etc.) dynamically,
you can only achieve so via the Python API is a. The downside is that it has a steeper learning curve.

There is a third way of assembling a pipeline by pointing to a directory with scripts. This API allows you quickly test
simple pipelines that may only have a couple of tasks.

For examples using different APIs, click here

Depending on the API you use, the pipeline will be exposed to Ploomber differently. For example, if using the Spec
API, you tell the pipeline to Ploomber by pointing to the path to a pipeline.yaml file, known as an entry point,
discussed below.

Entry points

To execute your pipeline, Ploomber needs to know where it is. This location is known as “entry point”. There are three
types of entry points (ordered by flexibility):

1. A directory

2. [Spec API] Spec (aka pipeline.yaml)

3. [Python API] Factory function (a function that returns a DAG object)

The following sections describe each entry point in detail.

Directory entry point

Ploomber can figure out your pipeline without even having a pipeline.yaml, by just passing a directory. This kind
of entry point is the simplest one but also, the less flexible, since there isn’t a pipeline definition, products must be
declared in the source code itself. Note that only Python and R scripts support this, for example:

%% tags=["parameters"]
product = {'nb': 'output.ipynb', 'data': 'output.csv'}
upstream = ['a_task']
#

continues...

Internally, Ploomber uses the ploomber.spec.DAGSpec.from_directory method. See the documentation for de-
tails.

All commands that accept the --entry-point/-e parameter can take a directory as a value. For example, to build a
pipeline using the current directory:

ploomber build --entry-point .

It’s also possible to select a subset of the files in a directory using a glob-like pattern:

ploomber build --entry-point "*.py" # note the quotes

Note: Pipelines built without a pipeline.yaml file cannot be parametrized.

104 Chapter 2. Index

https://github.com/ploomber/projects

ploomber, Release 0.23.1

[Spec API] Spec entry point

If you want to customize how Ploomber executes your pipeline, you have to create a pipeline.yaml file; this is known
as a spec entry point. A pipeline.yaml file is the recommended approach for most projects: it has a good level of
flexibility and doesn’t require you to learn Ploomber’s internal Python API.

To call a DAG defined in a path/to/pipeline.yaml file pass the path:

ploomber build --entry-point pah/to/pipeline.yaml

If your pipeline exists inside a package:

ploomber build --entry-point my_package::pah/to/pipeline.yaml

The command above searches for package my_package (by doing import my_package), then uses the relative path.

You can omit the --entry-point argument if the pipeline.yaml is in a standard location (Default locations).

An added feature is pipeline parametrization, to learn more Parametrized pipelines.

For schema details see: Spec API (pipeline.yaml).

[Python API] Factory entry point

The last approach requires you to write Python code to specify your pipeline. It has a steeper learning curve because
you have to become familiar with the API specifics, but it provides the most significant level of flexibility.

The primary advantage is dynamic pipelines, whose exact number of tasks and dependency relations are determined
when executing your Python code. For example, you might use a for loop to dynamically generate a few tasks based
on some input parameters.

For Ploomber to know how to build your pipeline written as Python code, you have to provide a factory entry point,
which is a function that returns a DAG object. For example, if your factory is a function called make in a file called
pipeline.py, then your entry point is the dotted path pipeline.make, which may look like this:

from ploomber import DAG

def make():
dag = DAG()
add tasks to your pipeline...
return dag

You can execute commands against your pipeline like this:

ploomber {command} --entry-point pipeline.make

Internally, Ploomber will do something like this:

from pipeline import make

dag = make()

(if using ploomber build)
dag.build()

If your factory function has arguments, they will show up in the CLI. This guide shows how to parametrize a factory
function: Parametrized pipelines

2.3. User Guide 105

ploomber, Release 0.23.1

If your factory function has a docstring, the first line displays in the CLI help menu (e.g. ploomber build
--entry-point factory.make --help). If the docstring is in the numpydoc format (and numpydoc is installed,
pip install numpydoc), descriptions for documented parameters will be displayed as well.

2.4 Deployment

2.4.1 Introduction

The two most common ways to deploy data pipelines are batch and online. Ploomber supports both deployment options.

In batch, you obtain new data to make predictions and store them for later use. This process usually happens on a
schedule. For example, you may develop a Machine Learning pipeline that runs every morning, predicts the probability
of user churn, and stores such probabilities in a database table.

Alternatively, you may deploy a pipeline as an online service and expose your model as a REST API; users request
predictions at any time by sending input data.

Pipeline composition

Before diving into deployment details, let’s introduce the concept of pipeline composition.

The only difference between a Machine Learning training pipeline and its serving counterpart is what happens at the
beginning and the end.

At training time, we obtain historical data, generate features, and train a model:

At serving time, we obtain new data, generate features and make predictions using a trained model:

When the feature engineering process does not match, training-serving skew arises. Training-serving skew is one of
the most common problems when deploying ML models. To fix it, Ploomber allows you to compose pipelines: write
your feature generation once and re-use it to organize your training and serving pipelines; this ensures that the
feature engineering code matches precisely.

2.4.2 Batch processing

You can export Ploomber pipelines to production schedulers for batch processing. Check out our package Soopervisor,
which allows you to export to Kubernetes (via Argo workflows), AWS Batch, Airflow, and SLURM.

Composing batch pipelines

To compose a batch pipeline, use the import_tasks_from directive in your pipeline.yaml file.

For example, define your feature generation tasks in a features.yaml file:

generate one feature...
- source: features.a_feature
product: features/a_feature.csv

another feature...
- source: features.anoter_feature
product: features/another_feature.csv

join the two previous features...
(continues on next page)

106 Chapter 2. Index

https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://ploomber.io/posts/train-serve-skew/
https://soopervisor.readthedocs.io
https://soopervisor.readthedocs.io/en/latest/tutorials/kubernetes.html
https://argoproj.github.io/
https://soopervisor.readthedocs.io/en/latest/tutorials/aws-batch.html
https://soopervisor.readthedocs.io/en/latest/tutorials/airflow.html
https://soopervisor.readthedocs.io/en/latest/tutorials/slurm.html

ploomber, Release 0.23.1

(continued from previous page)

- source: features.join
product: features/all.csv

Then import those tasks in your training pipeline, pipeline.yaml:

meta:
import feature generation tasks
import_tasks_from: features.yaml

tasks:
Get raw data for training
- source: train.get_historical_data
product: raw/get.csv

The import_tasks_from injects your features generation tasks here

Train a model
- source: train.train_model
product: model/model.pickle

Your serving pipeline pipepline-serve.yaml would look like this:

meta:
import feature generation tasks
import_tasks_from: features.yaml

tasks:
Get new data for predictions
- source: serve.get_new_data
product: serve/get.parquet

The import_tasks_from injects your features generation tasks here

Make predictions using a trained model
- source: serve.predict
product: serve/predictions.csv
params:
path_to_model: model.pickle

Here’s an example project showing how to use import_tasks_from to create a training (pipeline.yaml) and serving
(pipeline-serve.yaml) pipeline.

2.4. Deployment 107

https://github.com/ploomber/projects/tree/master/templates/ml-intermediate

ploomber, Release 0.23.1

Scheduling

For an example showing how to schedule runs with cron and Ploomber, click here.

2.4.3 Online service (API)

To encapsulate all your pipeline’s logic for online predictions, use ploomber.OnlineDAG . Once implemented, you
can generate predictions like this:

from my_project import MyOnlineDAG

MyOnlineDAG is a subclass of OnlineDAG
dag = MyOnlineDAG()
dag.predict(input_data=input_data)

You can easily integrate an online DAG with any library such as Flask or gRPC.

The only requisite is that your feature generation code should be entirely made of Python functions (i.e., ploomber.
tasks.PythonCallable) tasks with configured serializer and unserializer.

Composing online pipelines

To create an online DAG, list your feature tasks in a features.yaml and use import_tasks_from in your training
pipeline (pipeline.yaml). Subclass ploomber.OnlineDAG to create a serving pipeline.

OnlineDAG will take your tasks from features.yaml and create new “input tasks” based on upstream references in
yout feature tasks.

For example, if features.yaml has tasks a_feature and another_feature (see the diagram in the first section),
and both obtain their inputs from a task named get; the source code may look like this:

def a_feature(upstream):
raw_data = upstream['get']
process raw_data to generate features...
return a_feature
return df_a_feature

def another_feature(upstream):
raw_data = upstream['get']
process raw_data to generate features...
return another_feature
return df_another_feature

Since features.yaml does not contain a task named get, OnlineDAG automatically identifies it as an “input task”.
Finally, you must provide a “terminal task”, which is the last task in your online pipeline:

To implement this, create a subclass of OnlineDAG and provide the path to your features.yaml, parameters for your
terminal task and the terminal task:

from ploomber import OnlineDAG

subclass OnlineDAG...
class MyOnlineDAG(OnlineDAG):

and provide these three methods...
(continues on next page)

108 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/guides/cron

ploomber, Release 0.23.1

(continued from previous page)

get_partial: returns a path to your feature tasks
@staticmethod
def get_partial():

return 'tasks-features.yaml'

terminal_params: returns a dictionary with parameters for the terminal task
@staticmethod
def terminal_params():

model = pickle.loads(resources.read_binary(ml_online, 'model.pickle'))
return dict(model=model)

terminal_task: implementation of your terminal task
@staticmethod
def terminal_task(upstream, model):

receives all tasks with no downtream dependencies in
tasks-features.yaml
a_feature = upstream['a_feature']
another_feature = upstream['another_feature']
X = pd.DataFrame({'a_feature': a_feature,

'anoter_feature': anoter_feature})
return model.predict(X)

To call MyOnlineDAG:

from my_project import MyOnlineDAG

dag = MyOnlineDAG()

pass parameters (one per input)
prediction = dag.predict(get=input_data)

You can import and call MyOnlineDAG in any framework (e.g., Flask) to expose your pipeline as an online service.

from flask import Flask, request, jsonify
import pandas as pd

from my_project import OnlineDAG

instantiate online dag
dag = OnlineDAG()
app = Flask(__name__)

@app.route('/', methods=['POST'])
def predict():

request_data = request.get_json()
get JSON data and create a data frame with a single row
input_data = pd.DataFrame(request_data, index=[0])
pass input data, argument per root node
out = pipeline.predict(get=input_data)
return output from the terminal task
return jsonify({'prediction': int(out['terminal'])})

2.4. Deployment 109

ploomber, Release 0.23.1

Examples

Click here to see a deployment example using AWS Lambda.

Click here to see a complete sample project that trains a model and exposes an API via Flask.

2.4.4 Large-scale training

Ploomber pipelines can export to distributed workflow orchestrators for large-scale training. Check out our package
Soopervisor, which allows you to export to:

1. Kubernetes (via Argo workflows)

2. AWS Batch

3. Airflow

4. SLURM

2.4.5 Custom deployment

If don’t use one of the supported platforms (Kubernetes, AWS Batch, Airflow, and SLURM.), you can deploy using
the Python API.

Every Ploomber pipeline is represented as a ploomber.DAG object, which contains all the information you need to
orchestrate the pipeline in any platform, that’s how we export to other platforms: we load the user’s pipeline as a DAG
object and then convert it.

If you need help or have questions, open an issue or send us a message on Slack.

2.5 Cookbook

2.5.1 Parametrization

Note: This is a quick reference, for an in-depth tutorial, click here.

To parametrize your pipeline, create an env.yaml:

some_param: some_value
another_param: 42

Then use {{placeholders}} in your pipeline.yaml file:

tasks:
- source: scripts/plot.py
product: products/plot.ipynb
params:
some_param: '{{some_param}}'

When executing your pipeline, scripts/plot.py receives some_param="some_value".

You can use {{placeholders}}. The most common use case are tasks[*].params (just like the example above),
and tasks[*].product, to change the output location, or you can use both at the same time:

110 Chapter 2. Index

https://soopervisor.readthedocs.io/en/latest/tutorials/aws-lambda.html
https://github.com/ploomber/projects/tree/master/templates/ml-online
https://soopervisor.readthedocs.io
https://soopervisor.readthedocs.io/en/latest/tutorials/kubernetes.html
https://argoproj.github.io/
https://soopervisor.readthedocs.io/en/latest/tutorials/aws-batch.html
https://soopervisor.readthedocs.io/en/latest/tutorials/airflow.html
https://soopervisor.readthedocs.io/en/latest/tutorials/slurm.html
https://soopervisor.readthedocs.io/en/latest/tutorials/kubernetes.html
https://soopervisor.readthedocs.io/en/latest/tutorials/aws-batch.html
https://soopervisor.readthedocs.io/en/latest/tutorials/airflow.html
https://soopervisor.readthedocs.io/en/latest/tutorials/slurm.html
https://github.com/ploomber/ploomber/issues/new?title=Custom%20deployment
https://ploomber.io/community

ploomber, Release 0.23.1

tasks:
- source: scripts/plot.py
product: 'products/{{some_param}}/plot.ipynb'
params:
some_param: '{{some_param}}'

Switching from the command line

Ploomber recognizes {{placeholders}} and adds command-line arguments to change their value, to see a list of
available placeholders:

ploomber build --help

Dynamic parameters

Parameters declared in env.yaml are static (they can only change in value by editing the env.yaml file or via the
command-line); however, you can use the Python API to create dynamic parameters whose values are determined at
runtime, check out this example.

To run this locally, install Ploomber and execute: ploomber examples -n cookbook/report-generation

Found an issue? Let us know.

Questions? Ask us on Slack.

2.5.2 Report generation

Generating HTML/PDF reports.

Ploomber makes it simple to generate HTML and PDF reports from notebooks and scripts. To see some examples, go
to the reports/ directory. This cookbook covers several use cases and includes runnable examples.

HTML reports (easiest option)

HTML reports are the simplest option as they don’t require any extra dependencies. You only need to change the
product extension to .html and Ploomber will do the conversion:

Content of pipeline.yaml
scripts can generate reports
- source: tasks/script.py
name: html-report
product:
nb: reports/report.html
the task can generate more outputs, list them here

Runnable example:

2.5. Cookbook 111

https://github.com/ploomber/projects/tree/master/cookbook/dynamic-params
https://docs.ploomber.io/en/latest/get-started/quick-start.html
https://binder.ploomber.io/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fcookbook/report-generation%252FREADME.ipynb%26branch%3Dmaster
https://github.com/ploomber/projects/issues/new?title=cookbook/report-generation%20issue
https://ploomber.io/community/

ploomber, Release 0.23.1

get example
pip install ploomber "nbconvert[webpdf]" --upgrade
ploomber examples -n cookbook/report-generation -o example
cd example

install example dependencies
ploomber install

generate HTML report
ploomber task html-report

Check out report at reports/report.html

PDF reports

To generate PDF reports there are two options, using chromium or TeX.

Using chromium (easiest pdf option)

To use use chromium, pass nbconvert_exporter_name: webpdf

Content of pipeline.yaml
pdf report example
- source: tasks/script.py
name: webpdf-report
use the webpdf exporter (supportes embedded charts)
(it will download chromium if needed)
nbconvert_exporter_name: webpdf
product:
nb: reports/report-webpdf.pdf

Runnable example:

get example
pip install ploomber "nbconvert[webpdf]" --upgrade
ploomber examples -n cookbook/report-generation -o example
cd example

install example dependencies
ploomber install

generate PDF report
ploomber task webpdf-report

Check out report at reports/report-webpdf.pdf

112 Chapter 2. Index

ploomber, Release 0.23.1

Using TeX

TeX is the default, to use it, set the product extension to .pdf:

Content of pipeline.yaml
pdf report example (requires latex)
- source: tasks/script.py
name: pdf-report
generate pdf report by changing the extension.
product:
nb: reports/report.pdf

Runnable example:

get example
pip install ploomber "nbconvert[webpdf]" --upgrade
ploomber examples -n cookbook/report-generation -o example
cd example

install example dependencies
ploomber install

generate PDF report
ploomber task pdf-report

Check out report at reports/report.pdf

Installing TeX

For instructions on installing TeX, see this..

TeXLive is a large distribution, as an alternative, you may install BasicTeX. Here are instructions for macOS.

Upon BasicTeX installation, you’ll need to install a few extra packages:

Note: if using macOS or Linux, you may need to execute with sudo
tlmgr install adjustbox \
caption \
collectbox \
enumitem \
environ \
eurosym \
jknapltx \
parskip \
pgf \
rsfs \
tcolorbox \
titling \
trimspaces \
ucs \
ulem \
upquote

Source.

2.5. Cookbook 113

https://www.tug.org/texlive/
https://www.tug.org/mactex/morepackages.html
https://github.com/jupyter/nbconvert/issues/1328

ploomber, Release 0.23.1

Hiding code

In many cases, you want to hide the code so the report only contains tables and charts, you can do so easily with the
exclude_input option:

Content of pipeline.yaml
notebooks as well
- source: tasks/notebook.ipynb
name: another-html-report
product:
nb: reports/another.html

nbconvert_export_kwargs:
optionally hide the code from the report
exclude_input: True

Runnable example:

get example
pip install ploomber "nbconvert[webpdf]" --upgrade
ploomber examples -n cookbook/report-generation -o example
cd example

install example dependencies
ploomber install

generate HTML report and hide code
ploomber task another-html-report

Check out report at reports/another.html

Hiding cells

You may want to hide cells from the output notebook selectively. You can do so with the TagRemovePreprocessor,
which takes a list of tags. Any cells with such tags are excluded:

Content of pipeline.yaml
notebooks as well
- source: tasks/notebook.ipynb
name: another-html-report
product:
nb: reports/another.html

nbconvert_export_kwargs:
optionally hide the code from the report
exclude_input: True

optionally, exclude cells with certain tags
config:
HTMLExporter:
preprocessors: [nbconvert.preprocessors.TagRemovePreprocessor]

TagRemovePreprocessor:
remove_cell_tags: [boxplot]

114 Chapter 2. Index

ploomber, Release 0.23.1

To learn how to add cell tags, see this.

Runnable example:

get example
pip install ploomber "nbconvert[webpdf]" --upgrade
ploomber examples -n cookbook/report-generation -o example
cd example

install example dependencies
ploomber install

generate HTML report and hide boxplot
ploomber task another-html-report

Check out report at reports/another.html

2.5.3 Debugging

Note: This is a quick reference, for an in-depth tutorial, click here.

Note: All this section assumes you’re familiar with the Python debugger. See the documentation here

Executing task in debugging mode

To jump to the first line of a task and start a debugging session:

ploomber interact

Then:

dag['task-name'].debug()

Note: .debug() only works with Python functions, scripts, and notebooks.

To get the list of task names: list(dag).

After running .debug(), you’ll start a debugging session. You can use the next command to jump to the next line.
Type quit, and hit enter to exit the debugging session.

2.5. Cookbook 115

https://ploomber.io/s/tags
https://docs.python.org/3/library/pdb.html

ploomber, Release 0.23.1

Post-mortem debugging

Run and start a debugging session as soon as a task raises an exception.

ploomber task {task-name} --debug

ploomber build --debug

New in version 0.20: Added support for post-mortem debugging in notebooks using --debug

New in version 0.20: Added --debug option to ploomber task

Post-mortem debugging (debug later)

Added in version 0.20

Run the pipeline and serialize errors from all failing tasks for later debugging. This is useful when running tasks in
parallel or notebooks overnight.

ploomber task {task-name} --debuglater

ploomber build --debuglater

Then, to start a debugging session:

dltr {task-name}.dump

Once you’re done debugging, you can delete the {task-name}.dump file.

Note: Only built-in objects will be stored in the .dump file, for others, (e.g., pandas data frames, numpy arrays) only
the string representation is stored. To serialize all: pip install 'debuglater[all]'

Important: Using --debuglater will serialize all the variables, ensure you have enough disk space, especially if
running tasks in parallel.

New in version 0.20: Added --debuglater option to ploomber task

New in version 0.20: Added --debuglater option to ploomber build

Breakpoints

Note: This only work with Python functions, go to the next section to learn how to debug scripts/notebooks.

Breakpoints allow you to start a debugger at given line:

def my_task(product):
debugging session starts here...
from ipdb import set_trace; set_trace()
code continues...

116 Chapter 2. Index

ploomber, Release 0.23.1

Then:

ploomber build --debug

Debugging in Jupyter/VSCode

If you’re using Jupyter or similar (e.g. notebooks in VSCode), you can debug there.

Post-portem

If your code raises an exception, execute the following in a new cell, and a debugging session will start:

%debug

Click here to see the %pdb documentation.

If you want a debugging session to start whenever your code raises an exception:

%pdb

Note: run %pdb again to turn it off.

Click here to see the %pdb documentation.

Breakpoints

Once you’re in Jupyter, you can add a breakpoint at the line you want to debug:

def some_code_called_from_the_notebook():
debugging session starts here...
from ipdb import set_trace; set_trace()
code continues...

The breakpoint can be in a module (i.e., something that you imported using a import statement)

Visual debugger

JupyterLab recently incorporated a native debugger, click here to learn more.

2.5.4 Logging

Note: This is a quick reference, for an in-depth tutorial, click here.

2.5. Cookbook 117

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-debug
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-pdb
https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

ploomber, Release 0.23.1

Function tasks

If you’re using functions as tasks, configure logging like this:

import logging

def some_task(product):
uncomment the next line if using Python >= 3.8 on macOS
logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(__name__)

to log a message, call logger.info
logger.info('Some message')

Scripts or notebooks

If using scripts/notebooks tasks, add this a the top of each one:

import sys
import logging

logging.basicConfig(level=logging.INFO, stream=sys.stdout)
logger = logging.getLogger(__name__)

to log a message, call logger.info
logger.info('Some message')

and add the following to each task definition:

tasks:
- source: scripts/script.py
product: products/output.ipynb
add this
papermill_params:
log_output: True

Then, use the --log option when building the pipeline to print records to the terminal:

ploomber build --log info

If you also want to send logs to a file:

ploomber build --log info --log-file my.log

118 Chapter 2. Index

ploomber, Release 0.23.1

2.5.5 Serialization

Note: This is a quick reference, for an in-depth tutorial, click here.

By default, tasks receive a product argument and must take care of serializing their outputs at the passed location.
Serialization allows tasks to return their outputs and delegate serialization to a dedicated function.

For example, your task may look like this:

def my_function():
no need to serialize here, simply return the output
return [1, 2, 3]

Important: Serialization only works on function tasks.

And your serializer may look like this:

@serializer(fallback='joblib', defaults=['.csv', '.txt'])
def my_serializer(obj, product):

pass

Resources

1. A complete example.

2. An example showing tasks with a variable number of output files.

3. Serialization User Guide (explains the API step-by-step).

2.5.6 Database configuration

To have SQL scripts as tasks, you must configure a database client. There are two available clients: ploomber.
clients.SQLAlchemyClient and ploomber.clients.DBAPIClient, we recommend using the sqlalchemy client
if your database is supported because it is compatible with more types of SQL tasks (e.g., ploomber.tasks.SQLDump,
which dumps data into a local file).

Using SQLAlchemyClient

Ensure that you can connect to the database using sqlalchemy:

from sqlalchemy import create_engine

engine = create_engine('DATABASE_URI')

DATABASE_URI depends on the type of database. sqlalchemy supports a wide range of databases; you can find a list in
their documentation, while others come in third-party packages (e.g., Snowflake).

If create_engine is successful, ensure you can query your database:

with engine.connect() as conn:
results = conn.execute('SELECT * FROM some_table LIMIT 10')

2.5. Cookbook 119

https://github.com/ploomber/projects/tree/master/cookbook/serialization
https://github.com/ploomber/projects/tree/master/cookbook/variable-number-of-products/serializer
https://docs.sqlalchemy.org/en/14/core/engines.html#supported-databases
https://docs.snowflake.com/en/user-guide/sqlalchemy.html

ploomber, Release 0.23.1

If the query works, you can initialize a SQLAlchemyClient with the same DATABASE_URI:

from ploomber.clients import SQLAlchemyClient

client = SQLAlchemyClient('DATABASE_URI')

Using Snowflake

Here’s some sample code to configure Snowflake:

install snowflake-sqlalchemy
pip install snowflake-sqlalchemy

Build your URL with the helper function:

from snowflake.sqlalchemy import URL

params = dict(user='user',
password='pass',
account='acct',
warehouse='warehouse',
database='db',
schema='schema',
role='role')

client = SQLAlchemyClient(URL(**params))

If using OAuth instead of user/password authentication, you need to include the token:

import json
import requests # pip install requests
from snowflake.sqlalchemy import URL

def get_snowflake_token(username, password, account):
headers = {'content-type': 'application/x-www-form-urlencoded'}
data = {

'grant_type': 'password',
'scope': 'SESSION:ROLE-ANY',
'username: username,
'password': password,
'client_id: f'https://{account}.snowflakecomputing.com',

}
response = requests.post(oauth_url, data=data, headers=headers,

verify=False)

return str(json.loads(response.text)['access_token']).strip()

token = get_snowflake_token('user', 'password', 'account')

params = dict(user='user',
account='acct',
warehouse='warehouse',
database='db',

(continues on next page)

120 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

schema='schema',
role='role',
authentication='oauth',
token=token)

client = SQLAlchemyClient(URL(**params))

Using DBAPIClient

DBAPIClient takes a function that returns a DBAPI compatible connection and parameters to initialize such connection.

Here’s an example with SQLite:

from ploomber.clients import DBAPIClient
import sqlite3

client = DBAPIClient(sqlite3.connect, dict(database='my.db'))

Under the hood, Ploomber calls sqlite3.connect(database='my.db').

Another example, this time using Snowflake:

from ploomber.clients import DBAPIClient
import snowflake.connector

params = dict(user='USER', password='PASS', account='ACCOUNT')
client = DBAPIClient(snowflake.connector.connect, params)

Configuring the client in pipeline.yaml

Check out the SQL Pipelines to learn how to configure the database client in your pipeline.yaml file.

Examples

To see some examples using SQL connections, see this:

1. A short example that dumps data.

2. A SQL pipeline.

3. An ETL pipeline.

2.5.7 Task grids

You can use tasks[*].grid to create multiple tasks from a single task declaration, for example, to train various
models with different parameters:

execute independent tasks in parallel
executor: parallel

tasks:
(continues on next page)

2.5. Cookbook 121

https://www.python.org/dev/peps/pep-0249/
https://docs.snowflake.com/en/user-guide/python-connector-example.html#setting-session-parameters
https://github.com/ploomber/projects/tree/master/cookbook/sql-dump
https://github.com/ploomber/projects/tree/master/templates/spec-api-sql
https://github.com/ploomber/projects/tree/master/templates/etl

ploomber, Release 0.23.1

(continued from previous page)

- source: random-forest.py
generates random-forest-5-gini, random-forest-10-gini, ..., random-forest-20-

→˓entropy
name: random-forest-[[n_estimators]]-[[criterion]]
product: random-forest-[[n_estimators]]-[[criterion]].html
grid:

creates 6 tasks (3 * 2)
n_estimators: [5, 10, 20]
criterion: [gini, entropy]

Download example:

pip install ploomber
ploomber examples -n cookbook/grid -o grid
cd grid
pip install -r requirements.txt
ploomber build

Click here to see the complete example.

For full details, see the grid API documentation.

An in-depth tutorial showing how to use grid and MLflow for experiment tracking is available here.

2.5.8 Notebook Executors

Ploomber currently supports two notebook executors:

• Papermill

• Ploomber Engine

Papermill(default)

Papermill allows you to parameterizing, executing, and analyzing Jupyter notebooks. By default, if the executor
argument is not specified in NotebookRunner, Ploomber will use Papermill to execute notebooks. Additionally, you
can pass the following Papermill arguments in executor_params while using NotebookRunner.

Note: When migrating from one executor to another, make sure to check the parameters passed in executor_params,
as different executors might have different arguments and functionalities.

Sample pipeline

tasks:
By default, papermill engine is used for executing the scripts
source is the code you want to execute (.ipynb also supported)

- source: get.py
products are task's outputs
product:
scripts generate executed notebooks as outputs
nb: output/1-get.html
you can define as many outputs as you want
data: output/raw_data.csv

Selecting the executor for notebook
(continues on next page)

122 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/cookbook/grid
https://github.com/ploomber/projects/blob/master/templates/mlflow/README.ipynb
https://papermill.readthedocs.io/en/latest/
https://engine.ploomber.io/en/latest/quick-start.html
https://papermill.readthedocs.io/en/latest/reference/papermill-workflow.html?highlight=execute_notebook#module-papermill.execute

ploomber, Release 0.23.1

(continued from previous page)

executor: papermill
Executor params: Here passed to papermill
executor_params:

log_output: True

Ploomber-Engine

Ploomber-Engine is a notebook executor developer by the Ploomber team with better support for debugging and de-
ployment. You can use Ploomber-Engine with Ploomber by setting the executor argument to ploomber-engine
in NotebookRunner. Additionally, you can pass the following arguments in executor_params while using
NotebookRunner with ploomber-engine.

Sample pipeline

tasks:
By default, papermill engine is used for executing the scripts
source is the code you want to execute (.ipynb also supported)

- source: get.py
products are task's outputs
product:
scripts generate executed notebooks as outputs
nb: output/1-get.html
you can define as many outputs as you want
data: output/raw_data.csv

Selecting the executor for notebook
executor: ploomber-engine
Executor params: Here passed to Ploomber-Engine
executor_params:

log_output: True

2.5.9 Custom pipeline loading logic

Note: For a complete code example click here

When writing a pipeline via a pipeline.yaml file, the most common way to interact is via the command-line interface
(e.g., calling ploomber build). However, we may want to add more logic or embed it as part of a script in some cases.

Ploomber represents pipelines using DAG objects. You can convert your pipeline.yaml to a DAG object in Python
with the following code:

from ploomber.spec import DAGSpec

def load():
spec = DAGSpec('pipeline.yaml')
dag = spec.to_dag()
return dag

The spec variable is an object of type ploomber.spec.DAGSpec, while dag is of type ploomber.DAG , to learn more
about their interfaces, click on any of the links.

Assume the code above exists in a file named pipeline.py; you may load the pipeline from the CLI with:

2.5. Cookbook 123

https://engine.ploomber.io/en/latest/api/api.html#execute-notebook
https://github.com/ploomber/projects/tree/master/cookbook/python-load

ploomber, Release 0.23.1

ploomber build --entry-point pipeline.load

Or the shortcut:

ploomber build -e pipeline.load

The load function may contain extra logic; for example, you may skip tasks based on some custom rules or compute
dynamic parameters. For examples with custom logic, click here.

2.5.10 Hooks (e.g., on_finish)

Hooks allow you to execute an arbitrary function when a task finishes:

1. on_render executes right before executing the task.

2. on_finish executes when a task finishes successfully.

3. on_failure executes when a task errors during execution.

Suppose your pipeline.yaml looks like this:

tasks:
- source: tasks.my_task
product: products/output.csv
on_render: hooks.on_render
on_finish: hooks.on_finish
on_failure: hooks.on_failure

And your hooks.py file looks like this:

def on_render():
print('this runs before executing my_task')

def on_finish():
print('this runs when my_task executes without errors!')

def on_failure():
print('this runs when my_task raise an exception during execution!')

Hooks can take parameters; for example, you may add the product parameter to the hook, and Ploomber will call the
hook with the product for the corresponding task. Adding arguments is useful when your hook needs information
from the task. Furthermore, you can pass arbitrary parameters loaded from the pipeline.yaml. To learn more about
hook parameters click here.

Tip: Developing hooks interactively

If you want to develop hooks interactively, you may start a session inside your hook like this:

def on_finish(product):
from IPython import embed; embed()
print('this runs when my_task executes without errors!')

Once you execute your pipeline, an interactive session will start. Interactive sessions are useful to explore the arguments
(such as product) that your hook can request.

124 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/cookbook/python-load

ploomber, Release 0.23.1

If you want to exclusively run the on_finish hook (and skip task’s execution):

ploomber task {task-name} --on-finish

Resources

1. For a detailed look at the hooks API, click here.

2. For a tutorial, check out Pipeline testing, which is an in-depth guide of using on_finish for data testing.

DAG-level hooks

There are also DAG-level hooks, which work similarly. Declare them at the top section of your pipeline.yaml file:

dag-level hooks
on_render: hooks.on_render
on_finish: hooks.on_finish
on_failure: hooks.on_failure

tasks:
- source: tasks.my_task
product: products/output.csv

Click here to learn more.

2.6 API Reference

2.6.1 Spec API (pipeline.yaml)

Note: This document assumes you are already familiar with Ploomber’s core concepts (DAG, product, task, and
upstream). If you’re not, check out this guide: Basic concepts.

This section describes the pipeline.yaml schema.

meta

meta is an optional section for meta-configuration, it controls how the DAG is constructed.

meta.source_loader

Load task sources (tasks[*].source) from a Python module. For example, say you have a module my_module and
want to load sources from a path/to/sources directory inside that module:

meta:
source_loader:

module: my_module
path: path/to/sources

2.6. API Reference 125

ploomber, Release 0.23.1

meta.import_tasks_from

Add tasks defined in a different file to the current one. This direcive is useful for composing pipelines. For example, if
you have a training and a serving pipeline, you can define the pre-processing logic in a pipeline.preprocessing.
yaml and then import the file into pipeline.training.yaml and pipeline.serving.yaml:

meta:
import_tasks_from: /path/to/tasks.yaml

The file must be a list where each element is a valid Task.

Click here to see a batch serving example.

Click here to see an online serving example.

meta.extract_upstream

Extract upstream dependencies from the source code (True by default).

meta:
extract_upstream: True

If False, tasks must declare dependencies using the upstream key:

meta:
extract_upstream: false

tasks:
- source: tasks/clean.py
product: outupt/report.html
upstream: [some_task, another_task]

meta.extract_product

Default:

meta:
extract_product: False

meta.product_default_class

Product class key for a given task class. Names should match (case-sensitive) the names in the Python API. These are
rarely changed, except for SQLScript. Defaults:

meta:
product_default_class:

SQLScript: SQLRelation
SQLDump: File
NotebookRunner: File
ShellScript: File
PythonCallable: File

126 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/templates/ml-intermediate
https://github.com/ploomber/projects/tree/master/templates/ml-online

ploomber, Release 0.23.1

executor

Determines which executor to use:

1. serial: Runs one task at a time (Note: By default, function tasks run in a subprocess)

2. parallel: Run independent tasks in parallel (Note: this runs all tasks in a subprocess)

3. Dotted path: This allows you to customize the initialization parameters

For example, say you want to use the ploomber.executors.Serial executor but do not want to run functions in a
subprocess, you can pass a dotted path and custom parameters like this:

executor:
dotted_path: ploomber.executors.Serial
build_in_subprocess: false # do not run function tasks in a subprocess

Another common use case is to limit the number of subprocesses when using the ploomber.executors.Parallel
executor:

executor:
dotted_path: ploomber.executors.Parallel
processes: 2 # limit to a max of 2 processes

You can set which method should be used to start child processes. method can be ‘fork’, ‘spawn’ or ‘forkserver’:

executor:
dotted_path: ploomber.executors.Parallel
processes: 2 # limit to a max of 2 processes
start_method: spawn # start child process using 'spawn' method

To learn more about the executors:

• ploomber.executors.Serial

• ploomber.executors.Parallel

clients

These are the default clients. It allows you to specify a single client for all Tasks/Products for a given class. The most
common use case is SQL database configuration.

Other scenarios are ploomber.products.File clients, which Ploomber can use to backup pipeline results (say, for
example, you run a job that trains several models and want to save output results. You can use ploomber.clients.
GCloudStorageClient or ploomber.clients.S3Client for that.

Keys must be valid ploomber.tasks or ploomber.products names, values must be dotted paths to functions that
return a ploomber.clients instance.

Can be a string (call without arguments):

clients:
this assumes there is a clients.py with a get_client function
{some-class}: clients.get_client

Or a dictionary (to call with arguments):

2.6. API Reference 127

ploomber, Release 0.23.1

clients:
{some-class}:

this assumes there is a clients.py with a get_client function
dotted_path: clients.get_client
kwarg_1: value_1
...
kwarg_k: value_k

clients:
SQLDump: clients.get

tasks:
- source: query.sql
product: output/data.csv
dump everything into a single file
chunksize: null

from ploomber.clients import SQLAlchemyClient

def get():
return SQLAlchemyClient('sqlite:///my.db')

Download:

ploomber examples -n cookbook/sql-dump -o sql-dump

clients:
configures a dag-level File client
File: clients.get_local # you can switch to clients.get_s3 or clients.get_gcloud

tasks:
- source: functions.create_file
upon execution, this file is uploaded to storage
product: products/some-file.txt

- source: scripts/some-script.py
upon execution, both files are uploaded to storage
product:
nb: products/some-script.ipynb
file: products/another-file.txt

you may also pass a task-level File client if you don't want to upload
all products in the pipeline
client: clients.get_s3

from ploomber.clients import LocalStorageClient, GCloudStorageClient, S3Client

def get_local():
"""Returns local client
"""
return LocalStorageClient('backup')

(continues on next page)

128 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

def get_s3():
"""Returns S3 client
"""
assumes your environment is already configured, you may also pass the
json_credentials_path
return S3Client(bucket_name='some-bucket', parent='my-project/products')

def get_gcloud():
"""Returns google cloud storage client
"""
assumes your environment is already configured, you may also pass the
json_credentials_path
return GCloudStorageClient(bucket_name='some-bucket',

parent='my-project/products')

Download:

ploomber examples -n cookbook/file-client -o file-client

• SQL pipeline

• Example using BigQuery and Cloud Storage.

on_{render, finish, failure}

Important: Hooks are not executed when opening scripts/notebooks in Jupyter.

These are hooks that execute when specific events happen:

1. on_render: executes after verifying there are no errors in your pipeline declaration (e.g., a task that doesn’t
exist declared as an upstream dependency)

2. on_finish: executes upon successful pipeline run

3. on_failure: executes upon failed pipeline run

They all are optional and take a dotted path as an argument. For example, assume you have a hooks.py with function
on_render, on_finish, and on_failure. You can add them to your pipeline.yaml like this:

on_render: hooks.on_render
on_finish: hooks.on_finish
on_failure: hooks.on_failure

If your hook takes arguments, you may call it like this:

to call any hook with arguments
{hook-name} must be one of: on_render, on_finish, on_failure
{hook-name}:

dotted_path: {dotted.path.to.hook}
argument: value

2.6. API Reference 129

https://github.com/ploomber/projects/tree/master/templates/spec-api-sql
https://github.com/ploomber/projects/tree/master/templates/google-cloud

ploomber, Release 0.23.1

Calling with arguments is useful when you have a parametrized pipeline.

If you need information from your DAG in your hook, you may request the dag (ploomber.DAG) argument in any
of the hooks. on_finish can also request a report argument, which constains a summary report of the pipeline’s
execution.

on_failure can request a traceback argument which will have a dictionary, possible keys are build which has the
build error traceback, and on_finish which includes the on_finish hook traceback, if any. For more information,
see the DAG documentation ploomber.DAG .

dag-level hooks
on_render:
dotted_path: hooks.dag_level_on_render
my_param: 10

on_finish: hooks.dag_level_on_finish
on_failure: hooks.dag_level_on_failure

def dag_level_on_render(my_param):
"""Executed after the pipeline renders (before execution)
"""
print(f'rendered DAG! my_param={my_param}')

def dag_level_on_finish(dag, report):
"""Executes after the pipeline runs all tasks
"""
print(f'Finished executing pipeline {dag}, report:\n{report}')

def dag_level_on_failure(traceback):
"""Executes if the pipeline fails
"""
if traceback.get('build'):

print('Pipeline execution failed while running the tasks!')

if traceback.get('on_finish'):
print('Pipeline execution failed while executing an on_finish hook!')

Download:

ploomber examples -n cookbook/hooks -o hooks

serializer and unserializer

By default, tasks whose source is a function (i.e., ploomber.tasks.PythonCallable). Receive input paths (in
upstream) and output paths (in product) when the function executes. Saving interim results allows Ploomber to
provide incremental builds (What are incremental builds?).

However, in some cases, we might want to provide a pipeline that performs all operations in memory (e.g., to do
online serving). ploomber.OnlineDAG can convert a file-based pipeline into an in-memory one without code changes,
allowing you to re-use your feature engineering code for training and serving. The only requisite is for tasks to configure
a serializer and unserializer. Click here to see an example.

Normally, a task whose source is a function looks like this:

130 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/templates/ml-online

ploomber, Release 0.23.1

import pandas as pd

def my_task(product, upstream):
df_upstream = pd.read_csv(upstream['name'])
process data...
save product
df_product.to_csv(product)

And you use the product parameter to save any task output.

However, if you add a serializer, product isn’t passed, and you must return the product object:

import pandas as pd

def my_task(upstream):
df_upstream = pd.read_csv(upstream['name'])
process data...
return df_product

The serializer function is called with the returned object as its first argument and product (output path) as the
second argument:

serializer(df_product, product)

A similar logic applies to unserializer; when present, the function is called for each upstream dependency with the
product as the argument:

unserializer(product)

In your task function, you receive objects (instead of paths):

import pandas as pd

def my_task(upstream):
no need to call pd.read_csv here
df_upstream = upstream['name']
return df_product

If you want to provide a Task-level serializer/unserializer pass it directly to the task, if you set a DAG-level serial-
izer/unserializer and wish to exclude specific task pass serializer: null or unserializer: null in the selected
task.

serializer: util.my_serializer
unserializer: util.my_unserializer

tasks:
- source: tasks.one_product
product: output/one.txt

- source: tasks.many_products
product:
something: output/something.csv
another: output/something.txt

(continues on next page)

2.6. API Reference 131

ploomber, Release 0.23.1

(continued from previous page)

- source: tasks.joblib_product
product: output/something.joblib

- source: tasks.final_product
product: output/final.csv

from ploomber.io import serializer, unserializer

@serializer(fallback='joblib', defaults=['.csv', '.txt'])
def my_serializer(obj, product):

pass

@unserializer(fallback='joblib', defaults=['.csv', '.txt'])
def my_unserializer(product):

pass

Download:

ploomber examples -n cookbook/serialization -o serialization

source_loader

If you package your project (i.e., add a setup.py), source_loader offers a convenient way to load sources inside
such package.

For example, if your package is named my_package and you want to load from the folder my_sources/ within the
package:

meta:
source_loader:

module: my_package
path: my_sources

tasks:
this is loaded from my_package (my_sources directory)
- source: script.sql
task definition continues...

To find out the location used, you can execute the following in a Python session:

import my_package; print(my_package) # print package location

The above should print something like path/to/my_package/__init__.py. Using the configuration above, it im-
plies that source loader will load the file from path/to/my_package/my_sources/script.sql.

Note: this only applies to tasks whose source is a relative path. Dotted paths and absolute paths are not affected.

For details, see ploomber.SourceLoader, which is the underlying Python implementation. Here’s an example that
uses source_loader.

132 Chapter 2. Index

https://github.com/ploomber/projects/blob/master/templates/ml-online/src/ml_online/pipeline.yaml
https://github.com/ploomber/projects/blob/master/templates/ml-online/src/ml_online/pipeline.yaml

ploomber, Release 0.23.1

SQLScript product class

By default, SQL scripts use ploomber.products.SQLRelation as product class. Such product doesn’t save prod-
uct’s metadata; required for incremental builds (What are incremental builds?). If you want to use them, you need to
change the default value and configure the product’s client.

Here’s an example that uses product_default_class to configure a SQLite pipeline with incremental builds.

For more information on product clients, see: FAQ and Glossary.

Loading from a factory

The CLI looks for a pipeline.yaml by default, if you’re using the Python API, and want to save some typing, you
can specify a pipeline.yaml like this:

pipeline.yaml
location: {dotted.path.to.factory}

With such configuration, commands such as ploomber build will work.

task

task schema.

Tip: All other keys passed here are forwarded to the class constructor, so the allowed values will depend on the task
class. For example, if running a notebook the task class is ploomber.tasks.NotebookRunner, if it’s a function it’ll
be a ploomber.tasks.PythonCallable, see the documentation to learn what extra arguments they take.

tasks[*].name

The name of the task. The filename (without the extension) is used if not defined.

tasks[*].source

Indicates where the source code for a task is. This can be a path to a files if using scripts/notebooks or dotted paths if
using a function.

By default, paths are relative to the pipeline.yaml parent folder (absolute paths are not affected), unless
source_loader is configured; in such situation, paths are relative to the location configured in the SourceLoader
object. See the source_loader section for more details.

For example, if your pipeline is located at project/pipeline.yaml, and you have:

tasks:
- source: scripts/my_script.py
task definition continues...

Ploomber will expect your script to be located at project/scripts/my_script.py

If using a function, the dotted path should be importable. for example, if you have:

2.6. API Reference 133

https://github.com/ploomber/projects/tree/master/templates/spec-api-sql

ploomber, Release 0.23.1

tasks:
- source: my_package.my_module.my_function
task definition continues...

Ploomber runs a code equivalent to:

from my_package.my_module import my_function

tasks[*].product

Indicates output(s) generated by the task. This can be either a File(s) or SQL relation(s) (table or view). The exact type
depends on the source value for the given task: SQL scripts generate SQL relations, everything else generates files.

When generating files, paths are relative to the pipeline.yaml parent directory. For example, if your pipeline is
located at project/pipeline.yaml, and you have:

tasks:
- source: scripts/my_script.py
product: output/my_output.csv

Ploomber will save your output to project/output/my_output.csv

When generating SQL relations, the format is different:

tasks:
- source: scripts/my_script.sql
list with three elements (last one can be table or view)
product: [schema, name, table]
schema is optional, it can also be: [name, table]

If the task generates multiple products, pass a dictionary:

tasks:
- source: scripts/my_script.py
product:
nb: output/report.html
data: output/data.csv

Note: The name of keys in the product dictionary can be chosen freely so as to be descriptive of the outputs (e.g.
data, data_clean, model, etc.)

The mechanism to make product available when executing your task depends on the type of task.

SQL tasks receive a {{product}} placeholder:

-- {{product}} is replaced by "schema.name" or "name" if schema is empty
CREATE TABLE {{product}} AS
SELECT * FROM my_table WHERE my_column > 10

If product is a dictionary, use {{product['key']}}

Python/R scripts/notebooks receive a product variable in the “injected-parameters” cell:

134 Chapter 2. Index

ploomber, Release 0.23.1

%% tags=["parameters"]
product = None

%% tags=["injected-parameters"]
product = '/path/to/output/data.csv'

your code...

If product is a dictionary, this becomes product = {'key': '/path/to/output/data.csv', ...}

Python functions receive the product argument:

import pandas as pd

def my_task(product):
process data...
df.to_csv(product)

If product is a dictionary, use product['key'].

The same logic applies when making upstream dependencies available to tasks, but in this case. upstream is always a
dictionary: SQL scripts can refer to their upstream dependencies using {{upstream['key']}}. While Python scripts
and notebooks receive upstream in the “injected-parameters” cell, and Python functions are called with an upstream
argument.

tasks[*].params

Use this section to pass arbitrary parameters to a task.

tasks:
- source: {some-source}
product: {some-product}
params:
my_param: 42

You can also generate parameters from functions, for example:

tasks:
- source: {some-source}
product: {some-product}
params:
my_param: params::my_param_generate

This will import params and call the function my_param_generate. The returned value is assigned to my_param.

If your function takes parameters:

tasks:
- source: {some-source}
product: {some-product}
params:
my_param:
dotted_path: params::my_param_generate

(continues on next page)

2.6. API Reference 135

ploomber, Release 0.23.1

(continued from previous page)

arg1: value1
arg2: value2

In this case, my_param_generate is called like my_param_generate(arg1='value1', arg2='value2')

The mechanism to pass params to tasks depends on the task type:

SQL tasks receive them as placeholders.

-- {{my_param}} is replaced by 42
SELECT * FROM my_table WHERE my_column > {{my_param}}

Python/R scripts/notebooks receive them in the “injected-parameters” cell:

%% tags=["parameters"]
my_param = None

%% tags=["injected-parameters"]
my_param = 42

your code...

Python functions receive them as arguments:

function is called with my_param=42
def my_task(product, my_param):

pass

Changed in version 0.21: Allows passing dotted paths (module::function) to tasks[*].params

tasks[*].on_{render, finish, failure}

Important: Hooks are not executed when opening scripts/notebooks in Jupyter.

These are hooks that execute under certain events. They are equivalent to dag-level hooks, except they apply to a
specific task. There are three types of hooks:

1. on_render executes right before executing the task.

2. on_finish executes when a task finishes successfully.

3. on_failure executes when a task errors during execution.

They all are optional and take a dotted path as an argument. For example, assume your hooks.py with functions
on_render, on_finish, and on_failure. You can add those hooks to a task in your pipeline.yaml like this:

tasks:
- source: tasks.my_task
product: products/output.csv
on_render: hooks.on_render
on_finish: hooks.on_finish
on_failure: hooks.on_failure

If your hook takes arguments, you may call it like this:

136 Chapter 2. Index

ploomber, Release 0.23.1

to call any hook with arguments
{hook-name} must be one of: on_render, on_finish, on_failure
{hook-name}:

dotted_path: {dotted.path.to.hook}
argument: value

Calling with arguments is useful when you have a parametrized pipeline.

If you need information from the task, you may add any of the following arguments to the hook:

1. task: Task object (a subclass of ploomber.tasks.Task)

2. client: Tasks’s client (a subclass of ploomber.clients.Client)

3. product: Tasks’s product (a subclass of ploomber.products.Product)

4. params: Tasks’s params (a dictionary)

For example, if you want to check the data quality of a function that cleans some data, you may want to add an
on_finish hook that loads the output and tests the data:

import pandas as pd

def on_finish(product):
df = pd.read_csv(product)

check that column "age" has no NAs
assert not df.age.isna().sum()

tasks:
- source: tasks.do_something
product: output/data.csv
task-level hooks
on_render:
dotted_path: hooks.on_render
my_param: 20

on_finish: hooks.on_finish
on_failure: hooks.on_failure

def on_render(my_param, task, client, product, params):
"""Executed after the task renders (before execution)
"""
print(f'Finished rendering {task.name} with my_param {my_param}, '

f'client {client}, product {product}, and task params {params}')

def on_finish(task, client, product, params):
"""Executes after the task runs
"""
print(f'Finished running {task.name} with client {client}, '

f'product {product} and params {params}')

def on_failure(task, client, product, params):
"""Executes if the task fails

(continues on next page)

2.6. API Reference 137

ploomber, Release 0.23.1

(continued from previous page)

"""
print(f'{task.name} with client {client}, '

f'product {product} and params {params} failed!')

Download:

ploomber examples -n cookbook/hooks -o hooks

tasks[*].params.resources_

The params section contains an optional section called resources_ (Note the trailing underscore). By default,
Ploomber marks tasks as outdated when their parameters change; however, parameters in the resources_ section
work differently: they’re marked as outdated when the contents of the file change. For example, suppose you’re using
a JSON file as a configuration source for a given task, and want to make Ploomber re-run a task if such file changes,
you can do something like this:

tasks:
- source: scripts/my-script.py
product: report.html
params:
resources_:

whenever the JSON file changes, my-script.py runs again
file: my-config-file.json

tasks[*].grid

Sometimes, you may want to run the same task over a set of parameters, grid allows you to do so. For example, say
you want to train multiple models, each one with a different set of parameters:

tasks:
- source: random-forest.py
name is required when using grid
name: random-forest-
product: random-forest.html
grid:

six tasks: 3 * 2
n_estimators: [5, 10, 20]
criterion: [gini, entropy]

The spec above generates six tasks, one for each combination of parameters (3 * 2). In this example, products will
be named random-forest-X.html where X goes from 0 to 5. Similarly, task names will be random-forest-X. You
can customize task names and product names to contain the corresponding parameter values, see the below sections
for details.

Generating large grids dynamically
In cases where listing each parameter isn’t feasible, you can write a function to produce all values (Added in version
0.21):

grid.py (note: this can be any name you want)

(continues on next page)

138 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

def generate_values():
return range(10)

Then call it in your pipeline.yaml like this:

tasks:
- source: random-forest.py
name is required when using grid
name: random-forest-
product: random-forest.html
grid:

n_estimators: grid::generate_values
criterion: [gini, entropy]

Note: This feature is available since version 0.19.8; however, in version 0.21, the format changed to module::
function. From 0.19.8 to 0.20, the format was module.function.

The above will generate 20 tasks (10 generate from n_estimators times 2 generated by criterion).

If the function takes parameters:

tasks:
- source: random-forest.py
name is required when using grid
name: random-forest-
product: random-forest.html
grid:
n_estimators:
dotted_path: grid::generate_values
arg1: value1
arg2: value2

criterion: [gini, entropy]

Templating output paths (products)
You can also customize the product outputs to organize them in different folders and names (Added in version 0.17.2):

tasks:
- source: random-forest.py
name: random-forest-
product: 'n_estimators=[[n_estimators]]/criterion=[[criterion]].html'
grid:

n_estimators: [5, 10, 20]
criterion: [gini, entropy]

The example above will generate outputs by replacing the parameter values; for example, it will store the random forest
with n_estimators=5, and criterion=gini at, n_estimators=5/criterion=gini.html. Note that this uses
square brackets to differentiate them from regular placeholders when using an env.yaml file.

Templating name tasks
Similarly, you can also customize task names (Added in version 0.19.8):

2.6. API Reference 139

ploomber, Release 0.23.1

tasks:
- source: random-forest.py
name: random-forest-[[n_estimators]]-[[criterion]]
product: 'n_estimators=[[n_estimators]]/criterion=[[criterion]].html'
grid:

n_estimators: [5, 10, 20]
criterion: [gini, entropy]

The above will generate with task names random-forest-5-gini, random-forest-10-gini, etc.

Passing a list of grids
You may pass a list instead of a dictionary to use multiple sets of parameters:

tasks:
- source: train-model.py
name: train-model-
product: train-model.html
grid:
- model_type: [random-forest]
n_estimators: [5, 10, 20]
criterion: [gini, entropy]

- model_type: [ada-boost]
n_estimators: [1, 3, 5]
learning_rate: [1, 2]

Creating a task that depends on all grid-generated tasks
To create a task downstream to all tasks generated by grid, you can use a wildcard with the * character:

make all tasks that start with train-model- dependencies of this task
upstream = ['train-model-*']

Examples and changelog

- source: scripts/fit.py
generates tasks fit-1, fit-2, etc
name: fit-[[model_type]]-[[n_estimators]]-[[criterion]][[learning_rate]]
disabling static_analysis because the notebook does not have
a fixed set of parameters (depends on random-forest vs ada-boost)
static_analysis: disable
product:
nb: products/report-[[model_type]]-[[n_estimators]]-[[criterion]][[learning_rate]].

→˓html
model: products/model-[[model_type]]-[[n_estimators]]-[[criterion]][[learning_

→˓rate]].pickle
grid:
generates 6 tasks (1 * 3 * 2)
- model_type: [random-forest]
n_estimators: [1, 3, 5]
criterion: [gini, entropy]

generates 6 tasks (1 * 3 * 2)
- model_type: [ada-boost]

(continues on next page)

140 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

n_estimators: [1, 3, 5]
learning_rate: [1, 2]

Download:

ploomber examples -n cookbook/grid -o grid

executor: parallel

tasks:
- source: tasks/load.py
product:
nb: products/load.html
data: products/data.csv

- source: tasks/fit.py
name: fit-[[model]]
product:
nb: products/fit-[[model]].html
model: products/model-[[model]].pkl

grid:
- model: [sklearn.ensemble.RandomForestClassifier]
model_params:
optimize over these parameters
- n_estimators: [2, 5]
criterion: [gini, entropy]

- model: [sklearn.svm.SVC]
model_params:
optimize over these parameters
- kernel: [linear, poly]
C: [0.1, 1.0]

Download:

pip install ploomber
ploomber examples -n cookbook/nested-cv -o nested-cv

Changed in version 0.21: Dotted paths are required to have the module::function format, module.function is no
longer allowed.

New in version 0.19.8: Pass dotted path (module.function) to generate large grids dynamically

New in version 0.19.8: Customize task names using placeholders [[placeholder]]

New in version 0.17.2: Use params and grid in the same task. Values in params are constant across the grid.

New in version 0.17.2: Customize the product paths with placeholders [[placeholder]]

2.6. API Reference 141

ploomber, Release 0.23.1

tasks[*].client

Task client to use. By default, the class-level client in the clients section is used. This task-level value overrides it.
Required for some tasks (e.g., SQLScript), optional for others (e.g., File).

Can be a string (call without arguments):

client: clients.get_db_client

Or a dictionary (to call with arguments):

client:
dotted_path: clients.get_db_client
kwarg_1: value_1
...
kwarg_k: value_k

tasks[*].product_client

Product client to use (to save product’s metadata). Only required if you want to enable incremental builds (What are
incremental builds?) if using SQL products. It can be a string or a dictionary (API is the same as tasks[*].client).

More information on product clients: FAQ and Glossary.

tasks[*].upstream

Dependencies for this task. Only required if meta.extract_upstream=True

tasks:
...
upstream: {str or list}

Example:

tasks:
source: scripts/my-script.py
product: output/report.html
upstream: [clean_data_a, clean_data_b]

tasks[*].class

Task class to use (any class from ploomber.tasks). You rarely have to set this, since it is inferred from source. For
example, ploomber.tasks.NotebookRunner for .py and .ipynb files, ploomber.tasks.SQLScript for .sql,
and ploomber.tasks.PythonCallable for dotted paths.

142 Chapter 2. Index

ploomber, Release 0.23.1

tasks[*].product_class

This takes any class name from ploomber.products. You rarely have to set this, since values from meta.
product_default_class contain the typical values.

Parametrizing with env.yaml

In some situations, it’s helpful to parametrize a pipeline. For example, you could run your pipeline with a sample of
the data as a smoke test; to make sure it runs before triggering a run with the entire dataset, which could take several
hours to finish.

To add parameters to your pipeline, create and env.yaml file next to your pipeline.yaml:

my_param: my_value
nested:

param: another_value

Then use placeholders in your pipeline.yaml file:

tasks:
- source: module.function
params:
my_param: '{{my_param}}'
my_second_param: '{{nested.param}}'

In the previous example, module.function is called with my_param='my_value' and
my_second_param='another_value'.

A common pattern is to use a pipeline parameter to change the location of tasks[*].product. For example:

tasks:
- source: module.function
path determined by a parameter
product: '{{some_directory}}/output.csv'

- source: my_script.sql
schema and prefix determined by a parameter
product: ['{{some_schema}}', '{{some_prefix}}_name', table]

This can help you keep products generated by runs with different parameters in different locations.

These are the most common use cases, but you can use placeholders anywhere in your pipeline.yaml values (not
keys):

tasks:
- source: module.function
doesn't work
'{{placeholder}}': value

You can update your env.yaml file or switch them from the command-line to change the parameter values, run
ploomber build --help to get a list of arguments you can pass to override the parameters defined in env.yaml.

Note that these parameters are constant (they must be changed explicitly by you either by updating the env.yaml file
or via the command line), if you want to define dynamic parameters, you can do so with the Python API, check out this
example for an example.

2.6. API Reference 143

https://github.com/ploomber/projects/tree/master/cookbook/dynamic-params
https://github.com/ploomber/projects/tree/master/cookbook/dynamic-params

ploomber, Release 0.23.1

Re-using values in env.yaml

In version 0.20 and newer, you can refer to existing keys in your env.yaml and re-use them in upcoming values:

prefix: path/to/outputs
reports: '{{prefix}}/reports' # resolves to /path/to/outputs/reports
models: '{{prefix}}/models' # resolves to /path/to/outputs/models

Note that order matters; you can only refer to keys that have been defined earlier in the file.

Setting parameters from the CLI

Once you define pipeline parameters, you can switch them from the command line:

ploomber {command} --env--param value # note the double dash

For example:

ploomber build --env--param value

Default placeholders

There are a few default placeholders you can use in your pipeline.yaml, even if not defined in the env.yaml (or if
you don’t have a env.yaml altogether)

• {{here}}: Absolute path to the parent folder of pipeline.yaml

• {{cwd}}: Absolute path to the current working directory

• {{root}}: Absolute path to project’s root folder. It is usually the same as {{here}}, except when the project
is a package (i.e., it has setup.py file), in such a case, it points to the parent directory of the setup.py file.

• {{user}}: Current username

• {{now}}: Current timestamp in ISO 8601 format (Added in Ploomber 0.13.4)

• {{git_hash}}: git tag (if any) or git hash (Added in Ploomber 0.17.1)

• {{git}}: returns the branch name (if at the tip of it), git tag (if any), or git hash (Added in Ploomber 0.17.1)

• {{env.ANY_ENV_VAR}} environment variable present on the instance running the pipeline can be referenced
using this syntax (Added in Ploomber 0.21.7)

When packaging a soopervisor docker image and no env.yaml file is defined a default one will be generated including
some default placeholders such as {{git}}, {{git_hash}}. The reason being is that the package being copied to the docker
image will not include .git and other ignored folders so at runtime ploomber won’t have the information necessary to
calculate the git hash, hence this is being pre-calculated during image build time from the parent pipeline repo.

A common use case for this is when passing paths to files to scripts/notebooks. For example, let’s say your script has to
read a file from a specific location. Using {{here}} turns path into absolute so you can ready it when using Jupyter,
even if the script is in a different location than your pipeline.yaml.

By default, paths in tasks[*].product are interpreted relative to the parent folder of pipeline.yaml. You can use
{{cwd}} or {{root}} to override this behavior:

144 Chapter 2. Index

ploomber, Release 0.23.1

tasks:
- source: scripts/my-script.py
product:
nb: products/report.html
data: product/data.csv

params:
make this an absolute file so you can read it when opening
scripts/my-script.py in Jupyter
input_path: '{{here}}/some/path/file.json'

For more on parametrized pipelines, check out the guide: Parametrized pipelines.

2.6.2 Command line interface

This document summarizes commonly used commands. To get full details, execute ploomber --help or ploomber
{command_name} --help.

When applicable, we use this sample pipeline to demonstrate which tasks will be executed after issuing a given com-
mand:

Assume yellow tasks are outdated and green tasks are up-to-date.

Executed tasks are shown in blue and skipped tasks are shown in white in diagrams below.

Build pipeline

ploomber build

Execute your pipeline end-to-end and speed it up by skipping tasks whose source code has not changed.

(Skips B2 because it’s up-to-date)

Build pipeline (forced)

ploomber build --force

Execute all tasks regardless of status.

Build pipeline partially

ploomber build --partially C

Builds your pipeline until it reaches task named C.

(Skips B2 because it’s up-to-date)

(Skips D because it’s not needed to build C)

To force the execution of tasks regardless of status, use the --force/-f option.

You can also select several tasks at the same time using wildcards:

ploomber build --partially 'fit-*' # note the single quotes

2.6. API Reference 145

ploomber, Release 0.23.1

The previous command will execute all tasks with the fit-* prefix and all their upstream dependencies.

You may skip building upstream dependencies using the --skip-upstream

ploomber build --partially 'fit-*' --skip-upstream # note the single quotes

Note that the previous command fails if the upstream products of fit-* tasks do not exist yet.

Plot

ploomber plot

Creates a pipeline plot and stores it.

New in Ploomber 0.18.2: You can plot the pipeline without installing extra dependencies. pygraphviz is still sup-
ported but optional. To learn more, see this.

To include the task’s products in the plot (only supported when using the pygraphviz backend):

ploomber plot --include-products

Status

ploomber status

Show a table with pipeline status. For each task: name, last execution time, status, product, docstring (first line) and
file location.

Report

ploomber report

Create an HTML report and save it in a pipeline.html file. The file includes the pipeline plot and a table with a
summary for each task.

Build a single task

ploomber task C

To force execution regardless of status use the --force/-f option.

Get task status

ploomber task task_name --status

If you also want to build the task, you must explicitly pass --build.

146 Chapter 2. Index

ploomber, Release 0.23.1

Task source code

ploomber task task_name --source

If you also want to build the task, you must explicitly pass --build.

Create new project

The scaffold command allows you to start a new project:

ploomber scaffold

The command above generates a project with sample pipeline. To create an empty project:

ploomber scaffold --empty

New in 0.16: You can pass a positional argument ploomber scaffold myproject.

Note that if you run this command in a folder that already has a pipeline.yaml in a Default locations, it will parse
your pipeline declaration looking for declared tasks whose source code file does not exist and proceed to create them.

ploomber scaffold

If you’d like to package your project:

ploomber scaffold --package

After creating a project, you can install dependencies with the ploomber install command (to learn more: install).

For a tutorial on the ploomber scaffold command: Scaffolding projects.

install

ploomber install installs dependencies:

ploomber install

ploomber install installs dependencies using pip if a requirements.txt file exists or conda, if an
environment.yml file exists.

New in 0.16: ploomber install has a few options to customize set up, run ploomber install --help to learn
more.

New in 0.16: ploomber install will install dependencies in the current environment, you can request creating a
virtual environment with the --create-env option, which will use venv or conda (if installed). Previously, it always
created a new environment

Upon installation, ploomber install generates lock files that contain specific versions for all required packages.
Lock files are useful for ensuring the stability of your project since upgrades to your dependencies may break your
code. To install from lock files:

ploomber install --use-lock

New in 0.16: ploomber install (without arguments) will use lock files if they exist. Otherwise, it’ll use regular
files.

2.6. API Reference 147

https://docs.python.org/3/library/venv.html

ploomber, Release 0.23.1

nb

nb is short for notebook. This command manages notebooks and scripts in your pipeline.

Inject cell to scripts and notebooks in your pipeline:

ploomber nb --inject

Enable opening .py as notebooks in JupyterLab with one click on the file:

ploomber nb --single-click

Re-format .ipynb notebooks as .py files with the percent format:

ploomber nb -f py:percent

Re-format .py files as .ipynb notebooks:

ploomber nb -f ipynb

The rest of the options are useful when using editors such as VSCode or PyCharm or when running old JupyterLab
versions (<2.x). When using recent JupyterLab versions, script/notebooks management is automatically performed by
the Jupyter plug-in.

Other commands are available, run ploomber nb --help to learn more.

Interactive sessions

To start an interactive session:

ploomber interact

Your pipeline is available in the dag variable. Refer to ploomber.DAG documentation for details.

Doing dag['task_name'] returns a Task instance, all task instances have a common API, but there are a few differ-
ences. Refer to the tasks documentation for details: Tasks.

The CLI guide describes some of the most common use cases for interactive sessions: Interactive sessions.

Examples

To get a copy of the examples from the Github repository.

List examples:

ploomber examples

Get one:

ploomber examples --name {name}

To download in a specific location:

ploomber examples --name {name} --output path/to/dir

For a tutorial on the ploomber examples command: Downloading templates.

148 Chapter 2. Index

https://github.com/ploomber/projects

ploomber, Release 0.23.1

Default locations

If you don’t pass the --entry-point/-e argument to the command line, Ploomber will try to find one automatically
by searching for a pipeline.yaml file at the current directory and parent directories.

If no such file exists, it looks for a setup.py. If it exists, it searches for a src/{pkg}/pipeline.yaml file where
{pkg} is a folder with any name. setup.py is only required for packaged projects.

If your pipeline has a different filename, you can create a setup.cfg file and indicate what file you want to set as
default. Note that changing the default affects both the command-line interface and the Jupyter plug-in.

[ploomber]
entry-point = path/to/pipeline.yaml

Note that paths are relative to the parent directory of setup.cfg.

Alternatively, you may set the ENTRY_POINT environment variable to a different filename (e.g., export
ENTRY_POINT=pipeline.serve.yaml). Note that this must be a filename, not a path to a file.

If you want to know which file will be used based on your project’s layout:

ploomber status --help

Look at the --entry-point description in the printed output.

New in version 0.19.6: Support for switching entry point with a setup.cfg file

2.6.3 Python API

This section lists the available classes and functions in the Python API. If you’re writing pipelines with the Spec API
(e.g., pipeline.yaml file), you won’t interact with this API directly. However, you may still want to learn about
ploomber.spec.DAGSpec if you need to load your pipeline as a Python object.

For code examples using the Python API, click here.

DAG

DAG([name, clients, executor]) A collection of tasks with dependencies
OnlineModel(module) A subclass of ploomber.OnlineDAG to provider a sim-

pler interface for online DAGs whose terminal task calls
model.predict.

OnlineDAG() Execute partial DAGs in-memory.
DAGConfigurator([d]) An object to customize DAG behavior
InMemoryDAG(dag[, return_postprocessor]) Converts a DAG to a DAG-like object that performs all

operations in memory (products are not serialized).

2.6. API Reference 149

https://github.com/ploomber/projects/tree/master/python-api-examples

ploomber, Release 0.23.1

ploomber.DAG

class ploomber.DAG(name=None, clients=None, executor='serial')
A collection of tasks with dependencies

Parameters
• name (str, optional) – A name to identify this DAG

• clients (dict, optional) – A dictionary with classes as keys and clients as values, can
be later modified using dag.clients[dag] = client

• differ (CodeDiffer) – An object to determine whether two pieces of code are the same
and to output a diff, defaults to CodeDiffer() (default parameters)

• executor (str or ploomber.executors instance, optional) – The executor to
use (ploomber.executors.Serial and ploomber.executors.Parallel), is a string is passed (‘se-
rial’ or ‘parallel’) the corresponding executor is initialized with default parameters

name
A name to identify the DAG

Type str

clients
A class to client mapping

Type dict

executor
Executor object to run tasks

Type ploomber.Executor

on_render
Function to execute upon rendering. Can request a “dag” parameter.

Type callable

on_finish
Function to execute upon execution. Can request a “dag” parameter and/or “report”, which contains the
report object returned by the build function.

Type callable

on_failure
Function to execute upon failure. Can request a “dag” parameter and/or “traceback” which will contain
a dictionary, possible keys are “build” which contains the build error traceback and “on_finish” which
contains the on_finish hook traceback, if any.

Type callable

serializer
Function to serialize products from PythonCallable tasks. Used if the task has no serializer. See ploombe.
tasks.PythonCallable documentation for details.

Type callable

unserializer
Function to unserialize products from PythonCallable tasks. Used if the task has no serializer. See
ploombe.tasks.PythonCallable documentation for details.

150 Chapter 2. Index

ploomber, Release 0.23.1

Type callable

Examples

Spec API:

pip install ploomber
ploomber examples -n guides/first-pipeline -o example
cd example
pip install -r requirements.txt
ploomber build

Python API:

>>> from pathlib import Path
>>> from ploomber import DAG
>>> from ploomber.tasks import ShellScript, PythonCallable
>>> from ploomber.products import File
>>> from ploomber.executors import Serial
>>> code = ("echo hi > {{product['first']}}; "
... "echo bye > {{product['second']}}")
>>> _ = Path('script.sh').write_text(code)
>>> dag = DAG(executor=Serial(build_in_subprocess=False))
>>> product = {'first': File('first.txt'), 'second': File('second.txt')}
>>> shell = ShellScript(Path('script.sh'), product, dag=dag, name='script')
>>> def my_task(upstream, product):
... first = Path(upstream['script']['first']).read_text()
... second = Path(upstream['script']['second']).read_text()
... Path(product).write_text(first + ' ' + second)
>>> callable = PythonCallable(my_task, File('final.txt'), dag=dag)
>>> shell >> callable
PythonCallable: my_task -> File('final.txt')
>>> _ = dag.build()

Methods

build([force, show_progress, debug, . . .]) Runs the DAG in order so that all upstream depen-
dencies are run for every task

build_partially(target[, force, . . .]) Partially build a dag until certain task
check_tasks_have_allowed_status(allowed,
. . .)
close_clients() Close all clients (dag-level, task-level and product-

level)
get(k[,d])

get_downstream(task_name) Get downstream tasks for a given task name
items()

keys()

continues on next page

2.6. API Reference 151

ploomber, Release 0.23.1

Table 2 – continued from previous page
plot([output, include_products, backend, . . .]) Plot the DAG
pop(name) Remove a task from the dag
render([force, show_progress, remote]) Render resolves all placeholders in tasks and deter-

mines whether a task should run or not based on the
task.product metadata, this allows up-to-date tasks to
be skipped

status(**kwargs) Returns a table with tasks status
to_markup([path, fmt, sections, backend]) Returns a str (md or html) with the pipeline’s descrip-

tion
values()

build(force=False, show_progress=True, debug=None, close_clients=True)
Runs the DAG in order so that all upstream dependencies are run for every task

Parameters
• force (bool, default=False) – If True, it will run all tasks regardless of status, defaults

to False

• show_progress (bool, default=True) – Show progress bar

• debug ('now' or 'later', default=None) – If ‘now’, Drop a debugging session if
building raises an exception. Note that this modifies the executor and temporarily sets
it to Serial with subprocess off and catching exceptions/warnings off. Restores the original
executor at the end. If ‘later’ it keeps the executor the same and serializes the traceback
errors for later debugging

close_clients [bool, default=True] Close all clients (dag-level, task-level and product-level) upon success-
ful build

Notes

All dag-level clients are closed after calling this function

Changed in version 0.20: debug changed from True/False to ‘now’/’later’/None

New in version 0.20: debug now supports debugging NotebookRunner tasks

Returns A dict-like object with tasks as keys and dicts with task status as values

Return type BuildReport

build_partially(target, force=False, show_progress=True, debug=None, skip_upstream=False)
Partially build a dag until certain task

Parameters
• target (str) – Name of the target task (last one to build). Can pass a wildcard such as

‘tasks-*’

• force (bool, default=False) – If True, it will run all tasks regardless of status, defaults
to False

• show_progress (bool, default=True) – Show progress bar

• debug ('now' or 'later', default=None) – If ‘now’, Drop a debugging session if
building raises an exception. Note that this modifies the executor and temporarily sets
it to Serial with subprocess off and catching exceptions/warnings off. Restores the original

152 Chapter 2. Index

ploomber, Release 0.23.1

executor at the end. If ‘later’ it keeps the executor the same and serializes the traceback
errors for later debugging

• skip_upstream (bool, default=False) – If False, includes all upstream dependencies
required to build target, otherwise it skips them. Note that if this is True and it’s not possible
to build a given task (e.g., missing upstream products), this will fail

Notes

Changed in version 0.20: debug changed from True/False to ‘now’/’later’/None

New in version 0.20: debug now supports debugging NotebookRunner tasks

check_tasks_have_allowed_status(allowed, new_status)

close_clients()
Close all clients (dag-level, task-level and product-level)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

get_downstream(task_name)
Get downstream tasks for a given task name

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

plot(output='embed', include_products=False, backend=None, image_only=False)
Plot the DAG

Parameters
• output (str, default='embed') – Where to save the output (e.g., pipeline.png). If ‘em-

bed’, it returns an IPython image instead.

• include_products (bool, default=False) – If False, each node only contains the
task name, if True if contains the task name and products. Only available when using the
pygraphviz backend

• backend (str, default=None) – How to generate the plot, if None it uses pygraphviz
if installed, otherwise it uses D3 (which doesn’t require extra dependencies), you can force
to use a backend by passing ‘pygraphviz’, ‘d3’, or ‘mermaid’.

pop(name)
Remove a task from the dag

render(force=False, show_progress=True, remote=False)
Render resolves all placeholders in tasks and determines whether a task should run or not based on the
task.product metadata, this allows up-to-date tasks to be skipped

Parameters
• force (bool, default=False) – Ignore product metadata status and prepare all tasks

to be executed. This option renders much faster in DAGs with products whose metadata is
stored in remote systems, because there is no need to fetch metadata over the network. If
the DAG won’t be built, this option is recommended.

• show_progress (bool, default=True) – Show progress bar

• remote (bool, default=False) – Use remote metadata for determining task status. In
most scenarios, you want this to be False, Ploomber uses this internally when exporting
pipelines to other platforms (via Soopervisor).

2.6. API Reference 153

ploomber, Release 0.23.1

status(**kwargs)
Returns a table with tasks status

to_markup(path=None, fmt='html', sections=None, backend=None)
Returns a str (md or html) with the pipeline’s description

Parameters sections (list) – Which sections to include, possible values are “plot”, “status”
and “source”. Defaults to [“plot”, “status”]

values()→ an object providing a view on D’s values

Attributes

clients

executor

product

ploomber.OnlineModel

class ploomber.OnlineModel(module)
A subclass of ploomber.OnlineDAG to provider a simpler interface for online DAGs whose terminal task
calls model.predict. OnlineModel is initialized with a module following a standard structure. Looks for
a pipeline-features.yaml in the module’s root directory (e.g. src/my_module/pipeline-features.
yaml), a model.pickle in the module’s root directory. The terminal task is executed with a model parameter
which contains the load model and calls model.predict. The last task in pipeline-features.yaml should
be named features.

See here for a complete example: https://github.com/ploomber/projects/blob/master/templates/ml-online/src/
ml_online/infer.py

Parameters module – A module following a standard structure

Examples

>>> import my_module
>>> model = OnlineModel(my_module)
>>> model.predict(x=some_input)

Methods

get_partial() Must return the location of a partial dag (str or path-
lib.Path)

init_dag_from_partial(partial) Initialize partial returned by get_partial()
predict(**kwargs) Returns the output of model.

predict(upstream['features'])

continues on next page

154 Chapter 2. Index

https://github.com/ploomber/projects/blob/master/templates/ml-online/src/ml_online/infer.py
https://github.com/ploomber/projects/blob/master/templates/ml-online/src/ml_online/infer.py

ploomber, Release 0.23.1

Table 4 – continued from previous page
terminal_params() Must return a dictionary with parameters passed to

terminal_task
terminal_task(upstream, model) Las function to execute.

get_partial()
Must return the location of a partial dag (str or pathlib.Path)

classmethod init_dag_from_partial(partial)
Initialize partial returned by get_partial()

predict(**kwargs)
Returns the output of model.predict(upstream['features'])

terminal_params()
Must return a dictionary with parameters passed to terminal_task

static terminal_task(upstream, model)
Las function to execute. The upstream parameter contains the output of all tasks that have no downstream
dependencies

ploomber.OnlineDAG

class ploomber.OnlineDAG
Execute partial DAGs in-memory. This is an abstract class, to use it. Create a subclass and provide the required
static methods.

See here for a complete example: https://github.com/ploomber/projects/blob/master/templates/ml-online/src/
ml_online/infer.py

Methods

get_partial() Must return the location of a partial dag (str or path-
lib.Path)

init_dag_from_partial(partial) Initialize partial returned by get_partial()
predict(**kwargs) Run the DAG
terminal_params() Must return a dictionary with parameters passed to

terminal_task
terminal_task(upstream, model) Las function to execute.

abstract static get_partial()
Must return the location of a partial dag (str or pathlib.Path)

classmethod init_dag_from_partial(partial)
Initialize partial returned by get_partial()

predict(**kwargs)
Run the DAG

Parameters **kwargs – One parameter per root task (task with no upstream dependencies) in
the partial DAG.

Returns A dictionary with {task_name
Return type returned_value}

2.6. API Reference 155

https://github.com/ploomber/projects/blob/master/templates/ml-online/src/ml_online/infer.py
https://github.com/ploomber/projects/blob/master/templates/ml-online/src/ml_online/infer.py

ploomber, Release 0.23.1

abstract static terminal_params()
Must return a dictionary with parameters passed to terminal_task

abstract static terminal_task(upstream, model)
Las function to execute. The upstream parameter contains the output of all tasks that have no downstream
dependencies

ploomber.DAGConfigurator

class ploomber.DAGConfigurator(d=None)
An object to customize DAG behavior

Note: this API is experimental an subject to change

To keep the DAG API clean, only the most important parameters are included in the constructor, the rest are
accesible via a DAGConfigurator object

Available parameters:

outdated_by_code: whether source code differences make a task outdated cache_rendered_status: keep results
from dag.render() whenever are needed again (e.g. when calling dag.build()) or compute it again every time.

cache_rendered_status: If True, once the DAG is rendered, subsequent calls to render will not do anything (ren-
dering is implicitely called in build, plot, status), otherwise it will always render again.

hot_reload: Reload sources whenever they are updated

Examples

>>> from ploomber import DAGConfigurator
>>> configurator = DAGConfigurator()
>>> configurator.params.outdated_by_code = True
>>> configurator.params.cache_rendered_status = False
>>> configurator.params.hot_reload = True
>>> dag = configurator.create()

Methods

create(*args, **kwargs) Return a DAG with the given parameters

create(*args, **kwargs)
Return a DAG with the given parameters

*args, **kwargs Parameters to pass to the DAG constructor

156 Chapter 2. Index

ploomber, Release 0.23.1

Attributes

params

ploomber.InMemoryDAG

class ploomber.InMemoryDAG(dag, return_postprocessor=None)
Converts a DAG to a DAG-like object that performs all operations in memory (products are not serialized). For
this to work all tasks must be PythonCallable objects initialized with callables that return a value with valid
serializer and unserializer parameters.

Parameters dag (ploomber.DAG) – The DAG to use

Examples

"""
This example shows how to re-use the same feature engineering code in
both training (batch processing) and serving (online).
"""
import pickle
from pathlib import Path

import pandas as pd
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier

from ploomber import DAG, InMemoryDAG
from ploomber.tasks import PythonCallable
from ploomber.products import File
from ploomber.executors import Serial
from ploomber.tasks import input_data_passer, in_memory_callable

def get():
"""Get training data"""
d = datasets.load_iris(as_frame=True)
df = d["data"]
df["target"] = d["target"]
return df

NOTE: "upstream" is the output from the task that executes before this one
def a_feature(upstream):

"""Compute one feature"""
df = upstream["get"]
return pd.DataFrame({"a_feature": df["sepal length (cm)"] ** 2})

def another(upstream):
"""Compute another feature"""

(continues on next page)

2.6. API Reference 157

ploomber, Release 0.23.1

(continued from previous page)

df = upstream["get"]
return pd.DataFrame({"another": df["sepal width (cm)"] ** 2})

def join(upstream):
return upstream["get"].join(upstream["a_feature"]).join(upstream["another"])

NOTE: "product" is the model file output location
def fit(product, upstream):

"""Train a model and save it (pickle format)"""
clf = DecisionTreeClassifier()
df = pd.read_csv(str(upstream["join"]))
X = df.drop("target", axis="columns")
y = df["target"]
clf.fit(X, y)

with open(str(product), "wb") as f:
pickle.dump(clf, f)

NOTE: serializer and unserializer are special function that tell the pipeline
how to convert the object returned by our tasks (pandas.DataFrame) to files.
These are only required when we want to build a dag that works both in
batch-processing and online mode
def serializer(df, product):

"""Save all data frames as CSVs"""
out = str(product)

make sure the parent folder exists
Path(out).parent.mkdir(parents=True, exist_ok=True)

df.to_csv(out, index=False)

def unserializer(product):
"""Function to read CSVs"""
return pd.read_csv(str(product))

def add_features(dag):
"""
Given a DAG, adds feature engineering tasks. The DAG must have a task "get"
that returns the input data.
"""
get_task = dag["get"]

output = Path("output")

instantiate tasks
a_feature_task = PythonCallable(

a_feature,

(continues on next page)

158 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

File(output / "a_feature.csv"),
dag,
serializer=serializer,
unserializer=unserializer,

)
another_task = PythonCallable(

another,
File(output / "another.csv"),
dag,
serializer=serializer,
unserializer=unserializer,

)
join_task = PythonCallable(

join,
File(output / "join.csv"),
dag,
serializer=serializer,
unserializer=unserializer,

)

establish dependencies
get_task >> a_feature_task
get_task >> another_task
(get_task + a_feature_task + another_task) >> join_task

return dag

def make_training():
"""Instantiates the training DAG"""
setting build_in_subprocess=False because Python does not like when we
use multiprocessing in functions defined in the main module. Works if
we define them in a different one
dag = DAG(executor=Serial(build_in_subprocess=False))

output = Path("output")

add "get" task that returns the training data
PythonCallable(

get,
File(output / "get.csv"),
dag,
serializer=serializer,
unserializer=unserializer,

)

add features tasks
add_features(dag)

add "fit" task for model training
fit_t = PythonCallable(fit, File(output / "model.pickle"), dag)

(continues on next page)

2.6. API Reference 159

ploomber, Release 0.23.1

(continued from previous page)

train after joining features
dag["join"] >> fit_t

return dag

def predict(upstream, model):
"""Make a prediction after computing features"""
return model.predict(upstream["join"])

def validate_input_data(df):
"""
Validate input data
"""
cols = [

"sepal length (cm)",
"sepal width (cm)",
"petal length (cm)",
"petal width (cm)",

]

if list(df.columns) != cols:
raise ValueError(f"Unexpected set of columns, expected: {cols!r}")

is_negative = df.min() < 0
wrong_cols = list(is_negative[is_negative].index)

if len(wrong_cols):
raise ValueError(

f"Column(s) {wrong_cols!r} have one or more invalid"
" (negative) observations"

)

return df

def make_predict():
"""Instantiate a prediction DAG using a previously trained model"""
dag_pred = DAG()

this special function adds a task with name "get" that will just forward
whatever value we pass when calling .build(). You can pass a function
in the "preprocessor" argument to perform arbitrary logic like parsing
or validation
input_data_passer(dag=dag_pred, name="get", preprocessor=validate_input_data)

we re-use the same code that we used for training!
add_features(dag_pred)

load model generated by the training graph
with open(Path("output", "model.pickle"), "rb") as f:

(continues on next page)

160 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

model = pickle.load(f)

add the final task, this special function just executes whatever
function we pass as the first argument, we can pass arbitrary parameters
using "params"
predict_task = in_memory_callable(

predict, dag=dag_pred, name="predict", params=dict(model=model)
)

predict after joining features
dag_pred["join"] >> predict_task

convert our batch-processing pipeline to a in-memory one and return
return InMemoryDAG(dag_pred)

instantiate training pipeline
dag = make_training()
run it (generates model.pkl)
dag.build()

instantiate prediction pipeline
dag_pred = make_predict()

input data: generates features from this and then feeds the model
sample_input = pd.DataFrame(

{
"sepal length (cm)": [5.9],
"sepal width (cm)": [3],
"petal length (cm)": [5.1],
"petal width (cm)": [1.8],

}
)

pass input data through the prediction pipeline. A pipeline might have
multiple inputs, in our case it only has one. The format is:
{task_name: input_data}
result = dag_pred.build({"get": sample_input})

result is a dictionary with {task_name: output}. Get the output from the
predict task
result["predict"]

2.6. API Reference 161

ploomber, Release 0.23.1

Methods

build(input_data[, copy]) Run the DAG

build(input_data, copy=False)
Run the DAG

Parameters
• input_data (dict) – A dictionary mapping root tasks (names) to dict params. Root tasks

are tasks in the DAG that do not have upstream dependencies, the corresponding dictionary
is passed to the respective task source function as keyword arguments

• copy (bool or callable) – Whether to copy the output of an upstream task before pass-
ing it to the task being processed. It is recommended to turn this off for memory efficiency
but if the tasks are not pure functions (i.e. mutate their inputs) this migh lead to bugs, in
such case, the best way to fix it would be to make all your tasks pure functions but you can
enable this option if memory consumption is not a problem. If True it uses the copy.copy
function before passing the upstream products, if you pass a callable instead, such function
is used (for example, you may pass copy.deepcopy)

Returns A dictionary mapping task names to their respective outputs

Return type dict

Tasks

Task(product, dag[, name, params]) Abstract class for all Tasks
PythonCallable(source, product, dag[, name, . . .]) Execute a Python function
NotebookRunner(source, product, dag[, name, . . .]) Run a Jupyter notebook using papermill.
ScriptRunner(source, product, dag[, name, . . .]) Similar to NotebookRunner, except it uses python to run

the code, instead of papermill, hence, it doesn’t generate
an output notebook.

SQLScript(source, product, dag[, name, . . .]) Execute a script in a SQL database to create a relation or
view

SQLDump(source, product, dag[, name, . . .]) Dumps data from a SQL SELECT statement to a file(s)
SQLTransfer(source, product, dag[, name, . . .]) Transfers data from a SQL database to another (Note:

this relies on pandas, only use it for small to medium
size datasets)

SQLUpload(source, product, dag[, name, . . .]) Upload data to a SQL database from a parquet or a csv
file.

PostgresCopyFrom(source, product, dag[, . . .]) Efficiently copy data to a postgres database using COPY
FROM (faster alternative to SQLUpload for postgres).

ShellScript(source, product, dag[, name, . . .]) Execute a shell script.
DownloadFromURL(source, product, dag[, . . .]) Download a file from a URL (uses url-

lib.request.urlretrieve)
Link(product, dag, name) A dummy Task used to “plug” an external Product to a

pipeline, this task is always considered up-to-date
Input(product, dag, name) A dummy task used to represent input provided by the

user, it is always considered outdated.

162 Chapter 2. Index

ploomber, Release 0.23.1

ploomber.tasks.Task

class ploomber.tasks.Task(product, dag, name=None, params=None)
Abstract class for all Tasks

Parameters
• source (str or pathlib.Path) – Source code for the task, for tasks that do not take

source code as input (such as PostgresCopyFrom), this can be another thing. The source can
be a template and can make references to any parameter in “params”, “upstream” parameters
or its own “product”, not all Tasks have templated source (templating code is mostly used by
Tasks that take SQL source code as input)

• product (Product) – The product that this task will create upon completion

• dag (DAG) – The DAG holding this task

• name (str) – A name for this task, if None a default will be assigned

• params (dict) – Extra parameters passed to the task on rendering (if templated source) or
during execution (if not templated source)

params
A read-only dictionary-like object with params passed, after running ‘product’ and ‘upstream’ are added,
if any

Type Params

on_render
Function to execute after rendering. The function can request any of the following arguments: task, client,
product, and params.

Type callable

on_finish
Function to execute upon execution. Can request the same arguments as the on_render hook.

Type callable

on_failure
Function to execute upon failure. Can request the same arguments as the on_render hook.

Type callable

Notes

All subclasses must implement the same constuctor to keep the API consistent, optional parameters after
“params” are ok

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load() Load task as pandas.DataFrame.

continues on next page

2.6. API Reference 163

ploomber, Release 0.23.1

Table 10 – continued from previous page
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load()
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

164 Chapter 2. Index

ploomber, Release 0.23.1

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

abstract run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

2.6. API Reference 165

ploomber, Release 0.23.1

ploomber.tasks.PythonCallable

class ploomber.tasks.PythonCallable(source, product, dag, name=None, params=None,
unserializer=None, serializer=None, debug_mode=None)

Execute a Python function

Parameters
• source (callable) – The callable to execute

• product (ploomber.products.Product) – Product generated upon successful execution

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

• params (dict) – Parameters to pass to the callable, by default, the callable will be executed
with a “product” (which will contain the product object). It will also include a “upstream”
parameter if the task has upstream dependencies along with any parameters declared here

• unserializer (callable, optional) – A callable to unserialize upstream products, the
product object is passed as unique argument. If None, the source function receives the prod-
uct object directly. If the task has no upstream dependencies, this argument has no effect

• serializer (callable, optional) – A callable to serialize this task’s product, must
take two arguments, the first argument passed is the value returned by the task’s source, the
second argument is the product oject. If None, the task’s source is responsible for serializing
its own product. If used, the source function must not have a “product” parameter but return
its result instead

• debug_mode (None, 'now' or 'later', default=None) – If ‘now’, runs notebook in de-
bug mode, this will start debugger if an error is thrown. If ‘later’, it will serialize the traceback
for later debugging. (Added in 0.20)

Examples

Spec API:

tasks:
- source: my_functions.my_task
product: data.csv

content of my_functions.py
from pathlib import Path

def my_task(product):
Path(product).touch()

Spec API (multiple outputs):

tasks:
- source: my_functions.another_task
product:

one: one.csv
another: another.csv

166 Chapter 2. Index

ploomber, Release 0.23.1

content of my_functions.py
from pathlib import Path

def another_task(product):
Path(product['one']).touch()
Path(product['another']).touch()

Python API:

>>> from pathlib import Path
>>> from ploomber import DAG
>>> from ploomber.tasks import PythonCallable
>>> from ploomber.products import File
>>> from ploomber.executors import Serial
>>> dag = DAG(executor=Serial(build_in_subprocess=False))
>>> def my_function(product):
... # create data.csv
... Path(product).touch()
>>> PythonCallable(my_function, File('data.csv'), dag=dag)
PythonCallable: my_function -> File('data.csv')
>>> summary = dag.build()

Python API (multiple products):

>>> from pathlib import Path
>>> from ploomber import DAG
>>> from ploomber.tasks import PythonCallable
>>> from ploomber.products import File
>>> from ploomber.executors import Serial
>>> dag = DAG(executor=Serial(build_in_subprocess=False))
>>> def my_function(product):
... Path(product['first']).touch()
... Path(product['second']).touch()
>>> product = {'first': File('first.csv'),
... 'second': File('second.csv')}
>>> task = PythonCallable(my_function, product, dag=dag)
>>> summary = dag.build()

Notes

New in version 0.20: debug constructor flag renamed to debug_mode to avoid conflicts with the debug method.

More examples using the Python API.

The executor=Serial(build_in_subprocess=False) argument is only required if copy-pasting the exam-
ple in a Python session. If you store the code in a script, you may delete it and call dag.build like this:

if __name__ == '__main__':
dag.build()

Then call your script:

python script.py

2.6. API Reference 167

https://github.com/ploomber/projects/tree/master/python-api-examples

ploomber, Release 0.23.1

Methods

build([force, catch_exceptions]) Build a single task
debug([kind]) Run callable in debug mode.
load([key]) Loads the product.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug(kind='ipdb')
Run callable in debug mode.

Parameters kind (str ('ipdb' or 'pdb')) – Which debugger to use ‘ipdb’ for IPython debug-
ger or ‘pdb’ for debugger from the standard library

Notes

Be careful when debugging tasks. If the task has run successfully, you overwrite products but don’t save
the updated source code, your DAG will enter an inconsistent state where the metadata won’t match the
overwritten product.

load(key=None, **kwargs)
Loads the product. It uses the unserializer function if any, otherwise it tries to load it based on the file
extension

Parameters
• key – Key to load, if this task generates more than one product

• **kwargs – Arguments passed to the unserializer function

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

168 Chapter 2. Index

ploomber, Release 0.23.1

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

debug_mode

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

continues on next page

2.6. API Reference 169

ploomber, Release 0.23.1

Table 13 – continued from previous page
product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

ploomber.tasks.NotebookRunner

class ploomber.tasks.NotebookRunner(source, product, dag, name=None, params=None,
executor='papermill', executor_params=None,
papermill_params=None, kernelspec_name=None,
nbconvert_exporter_name=None, ext_in=None,
nb_product_key='nb', static_analysis='regular',
nbconvert_export_kwargs=None, local_execution=False,
check_if_kernel_installed=True, debug_mode=None)

Run a Jupyter notebook using papermill. Support several input formats via jupytext and several output formats
via nbconvert

Parameters
• source (str or pathlib.Path) – Notebook source, if str, the content is interpreted as

the actual notebook, if pathlib.Path, the content of the file is loaded. When loading from a
str, ext_in must be passed

• product (ploomber.File) – The output file

• dag (ploomber.DAG) – A DAG to add this task to

• name (str, optional) – A str to indentify this task. Should not already exist in the dag

• params (dict, optional) – Notebook parameters. This are passed as the “parameters”
argument to the papermill.execute_notebook function, by default, “product” and “upstream”
are included

• executor (str, optional) – executor to use. Currently supports “ploomber-engine” and
“papermill”. Defaults to papermill executor. Can also be passed as “engine_name” in ex-
ecutor_params

• executor_params (dict, optional) – Parameters passed to executor, defaults to None.
Please refer to each executor execute_notebook APIs to learn more about this.

• papermill_params (dict, optional) – Other parameters passed to paper-
mill.execute_notebook, defaults to None

• kernelspec_name (str, optional) – Kernelspec name to use, if the file extension pro-
vides with enough information to choose a kernel or the notebook already includes kernel-
spec data (in metadata.kernelspec), this is ignored, otherwise, the kernel is looked up using
jupyter_client.kernelspec.get_kernel_spec

• nbconvert_exporter_name (str or dict, optional) – Once the notebook is run,
this parameter controls whether to export the notebook to a different parameter using the
nbconvert package, it is not needed unless the extension cannot be used to infer the final out-
put format, in which case the nbconvert.get_exporter is used. If nb_product_key is a list of
multiple nb products keys, nbconvert_exporter_name should be a dict containing keys from
this list.

170 Chapter 2. Index

ploomber, Release 0.23.1

• ext_in (str, optional) – Source extension. Required if loading from a str. If source is
a pathlib.Path, the extension from the file is used.

• nb_product_key (str or list, optional) – If the notebook is expected to generate
other products, pass the key to identify the output notebook (i.e. if product is a list with
3 ploomber.File, pass the index pointing to the notebook path). If the only output is the
notebook itself, this parameter is not needed If multiple notebook conversions are required
like html, pdf, this parameter should be a list of keys like ‘nb_ipynb’, ‘nb_html, ‘nb_pdf’.

• static_analysis (('disabled', 'regular', 'strict'), default='regular') –
Check for various errors in the notebook. In ‘regular’ mode, it aborts execution if the
notebook has syntax issues, or similar problems that would cause the code to break if
executed. In ‘strict’ mode, it performs the same checks but raises an issue before starting
execution of any task, furthermore, it verifies that the parameters cell and the params passed
to the notebook match, thus, making the notebook behave like a function with a signature.

• nbconvert_export_kwargs (dict) – Keyword arguments to pass to the nbconvert.
export function (this is only used if exporting the output ipynb notebook to another for-
mat). You can use this, for example, to hide code cells using the exclude_input parameter.
See nbconvert documentation for details. Ignored if the product is file with .ipynb exten-
sion.

• local_execution (bool, optional) – Change working directory to be the parent of the
notebook’s source. Defaults to False. This resembles the default behavior when running
notebooks interactively via jupyter notebook

• debug_mode (None, 'now' or 'later', default=None) – If ‘now’, runs notebook in de-
bug mode, this will start debugger if an error is thrown. If ‘later’, it will serialize the traceback
for later debugging. (Added in 0.20)

Examples

Spec API:

tasks:
- source: nb.ipynb
product: report.html

Spec API (multiple outputs):

tasks:
- source: nb.ipynb
product:

generated automatically by ploomber
nb: report.html
must be generated by nb.ipynb
data: data.csv

Spec API (multiple notebook products, added in 0.19.6):

(generate the executed notebooks in multiple formats)

tasks:
- source: script.py
keys can be named as per user's choice. None
of the keys are mandatory. However, every key mentioned

(continues on next page)

2.6. API Reference 171

ploomber, Release 0.23.1

(continued from previous page)

in this list should be a part of the product dict below.
nb_product_key: [nb_ipynb, nb_pdf, nb_html]
When nb_product_key is a list, nbconvert_exporter_name
should be a dict with required keys from nb_product_key
only. If missing, it uses the default exporter
nbconvert_exporter_name:

nb_pdf: webpdf
Every notebook product defined here should correspond to key
defined in nb_product_key.
product:

nb_ipynb: nb.ipynb
nb_pdf: doc.pdf
nb_html: report.html
must be generated by nb.ipynb
data: data.csv

Python API:

>>> from pathlib import Path
>>> from ploomber import DAG
>>> from ploomber.tasks import NotebookRunner
>>> from ploomber.products import File
>>> dag = DAG()
>>> NotebookRunner(Path('nb.ipynb'), File('report.html'), dag=dag)
NotebookRunner: nb -> File('report.html')
>>> dag.build()

Python API (customize output notebook):

>>> from pathlib import Path
>>> from ploomber import DAG
>>> from ploomber.tasks import NotebookRunner
>>> from ploomber.products import File
>>> dag = DAG()
>>> # do not include input code (only cell's output)
>>> NotebookRunner(Path('nb.ipynb'), File('out-1.html'), dag=dag,
... nbconvert_export_kwargs={'exclude_input': True},
... name='one')
NotebookRunner: one -> File('out-1.html')
>>> # Selectively remove cells with the tag "remove"
>>> config = {'TagRemovePreprocessor': {'remove_cell_tags': ('remove',)},
... 'HTMLExporter':
... {'preprocessors':
... ['nbconvert.preprocessors.TagRemovePreprocessor']}}
>>> NotebookRunner(Path('nb.ipynb'), File('out-2.html'), dag=dag,
... nbconvert_export_kwargs={'config': config},
... name='another')
NotebookRunner: another -> File('out-2.html')
>>> dag.build()

172 Chapter 2. Index

ploomber, Release 0.23.1

Notes

Changed in version 0.22.4: Added native ploomber-engine support with executor parameter

Changed in version 0.20: debug constructor flag renamed to debug_mode to prevent conflicts with the debug
method

Changed in version 0.19.6: Support for generating output notebooks in multiple formats, see example above.

nbconvert’s documentation

Methods

build([force, catch_exceptions]) Build a single task
debug([kind]) Opens the notebook (with injected parameters) in de-

bug mode in a temporary location
load([key]) Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug(kind='ipdb')
Opens the notebook (with injected parameters) in debug mode in a temporary location

Parameters kind (str, default='ipdb') – Debugger to use, ‘ipdb’ to use line-by-line IPython
debugger, ‘pdb’ to use line-by-line Python debugger or ‘pm’ to to post-portem debugging
using IPython

2.6. API Reference 173

https://nbconvert.readthedocs.io/en/latest/config_options.html#preprocessor-options

ploomber, Release 0.23.1

Notes

Be careful when debugging tasks. If the task has run successfully, you overwrite products but don’t save
the updated source code, your DAG will enter an inconsistent state where the metadata won’t match the
overwritten product.

load(key=None, **kwargs)
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

debug_mode

exec_status

continues on next page

174 Chapter 2. Index

ploomber, Release 0.23.1

Table 15 – continued from previous page
name A str that represents the name of the task, you can

access tasks in a dag using dag[‘some_name’]
on_failure Callable to be executed if task fails (passes Task as

first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

static_analysis

upstream A mapping for upstream dependencies {task name}
-> [task object]

ploomber.tasks.ScriptRunner

class ploomber.tasks.ScriptRunner(source, product, dag, name=None, params=None, ext_in=None,
static_analysis='regular', local_execution=False)

Similar to NotebookRunner, except it uses python to run the code, instead of papermill, hence, it doesn’t generate
an output notebook. But it also works by injecting a cell into the source code. Source can be a .py script or an
.ipynb notebook. Does not support magics.

Parameters
• source (str or pathlib.Path) – Script source, if str, the content is interpreted as the

actual script, if pathlib.Path, the content of the file is loaded. When loading from a str, ext_in
must be passed

• product (ploomber.File) – The output file

• dag (ploomber.DAG) – A DAG to add this task to

• name (str, optional) – A str to indentify this task. Should not already exist in the dag

• params (dict, optional) – Script parameters. This are passed as the “parameters” argu-
ment to the papermill.execute_notebook function, by default, “product” and “upstream” are
included

• ext_in (str, optional) – Source extension. Required if loading from a str. If source is
a pathlib.Path, the extension from the file is used.

• static_analysis (('disabled', 'regular', 'strict'), default='regular') –
Check for various errors in the script. In ‘regular’ mode, it aborts execution if the notebook
has syntax issues, or similar problems that would cause the code to break if executed. In
‘strict’ mode, it performs the same checks but raises an issue before starting execution of any
task, furthermore, it verifies that the parameters cell and the params passed to the notebook
match, thus, making the script behave like a function with a signature.

2.6. API Reference 175

ploomber, Release 0.23.1

• local_execution (bool, optional) – Change working directory to be the parent of the
script source. Defaults to False.

Examples

Spec API:

tasks:
- source: script.py
class: ScriptRunner
product:

data: data.csv
another: another.csv

Python API:

>>> from pathlib import Path
>>> from ploomber import DAG
>>> from ploomber.tasks import ScriptRunner
>>> from ploomber.products import File
>>> dag = DAG()
>>> product = {'data': File('data.csv'), 'another': File('another.csv')}
>>> _ = ScriptRunner(Path('script.py'), product, dag=dag)
>>> _ = dag.build()

Methods

build([force, catch_exceptions]) Build a single task
debug([kind]) Opens the notebook (with injected parameters) in de-

bug mode in a temporary location
load([key]) Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises

176 Chapter 2. Index

ploomber, Release 0.23.1

• TaskBuildError – If the error failed to build because it has upstream dependencies, the
build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug(kind='ipdb')
Opens the notebook (with injected parameters) in debug mode in a temporary location

Parameters kind (str, default='ipdb') – Debugger to use, ‘ipdb’ to use line-by-line IPython
debugger, ‘pdb’ to use line-by-line Python debugger or ‘pm’ to to post-portem debugging
using IPython

Notes

Be careful when debugging tasks. If the task has run successfully, you overwrite products but don’t save
the updated source code, your DAG will enter an inconsistent state where the metadata won’t match the
overwritten product.

load(key=None, **kwargs)
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

2.6. API Reference 177

ploomber, Release 0.23.1

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

static_analysis

upstream A mapping for upstream dependencies {task name}
-> [task object]

ploomber.tasks.SQLScript

class ploomber.tasks.SQLScript(source, product, dag, name=None, client=None, params=None)
Execute a script in a SQL database to create a relation or view

Parameters
• source (str or pathlib.Path) – SQL script source, if str, the content is interpreted as

the actual script, if pathlib.Path, the content of the file is loaded

• product (ploomber.products.product) – Product generated upon successful execution

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

• client (ploomber.clients.{SQLAlchemyClient, DBAPIClient}, optional) –
The client used to connect to the database. Only required if no dag-level client has been
declared using dag.clients[class]

• params (dict, optional) – Parameters to pass to the script, by default, the callable will
be executed with a “product” (which will contain the product object). It will also include
a “upstream” parameter if the task has upstream dependencies along with any parameters
declared here. The source code is converted to a jinja2.Template for passing parameters,
refer to jinja2 documentation for details

178 Chapter 2. Index

ploomber, Release 0.23.1

Examples

Spec API:

clients:
SQLScript: clients.get
SQLiteRelation: clients.get

tasks:
- source: script.sql
product: [subset, table]

Python API (SQLite):

>>> import sqlite3
>>> import pandas as pd
>>> from ploomber import DAG
>>> from ploomber.products import SQLiteRelation
>>> from ploomber.tasks import SQLScript
>>> from ploomber.clients import DBAPIClient
>>> con_raw = sqlite3.connect(database='my_db.db')
>>> df = pd.DataFrame({'a': range(100), 'b': range(100)})
>>> _ = df.to_sql('numbers', con_raw, index=False)
>>> dag = DAG()
>>> client = DBAPIClient(sqlite3.connect, dict(database='my_db.db'),
... split_source=';')
>>> dag.clients[SQLScript] = client
>>> dag.clients[SQLiteRelation] = client
>>> script = ('DROP TABLE IF EXISTS {{product}};'
... 'CREATE TABLE {{product}} AS '
... 'SELECT * FROM numbers LIMIT 3')
>>> _ = SQLScript(script, SQLiteRelation(('subset', 'table')),
... dag=dag, name='create-subset')
>>> _ = dag.build()
>>> df = pd.read_sql('SELECT * FROM subset', con_raw)
>>> con_raw.close()
>>> df.head(3)

a b
0 0 0
1 1 1
2 2 2

See also:

ploomber.clients.SQLDump A task to execute a SELECT statement and dump the output into a file

2.6. API Reference 179

ploomber, Release 0.23.1

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load([limit]) Load this task’s product in a pandas.DataFrame
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load(limit=10)
Load this task’s product in a pandas.DataFrame

Parameters limit (int, default=10) – How many records to load, defaults to 10

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

180 Chapter 2. Index

ploomber, Release 0.23.1

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

2.6. API Reference 181

ploomber, Release 0.23.1

ploomber.tasks.SQLDump

class ploomber.tasks.SQLDump(source, product, dag, name=None, client=None, params=None,
chunksize=10000, io_handler=None)

Dumps data from a SQL SELECT statement to a file(s)

Parameters
• source (str or pathlib.Path) – SQL script source, if str, the content is interpreted as

the actual script, if pathlib.Path, the content of the file is loaded

• product (ploomber.products.product) – Product generated upon successful execution

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

• client (ploomber.clients.{SQLAlchemyClient, DBAPIClient}, optional) –
The client used to connect to the database. Only required if no dag-level client has been
declared using dag.clients[class]

• params (dict, optional) – Parameters to pass to the script, by default, the callable will
be executed with a “product” (which will contain the product object). It will also include
a “upstream” parameter if the task has upstream dependencies along with any parameters
declared here. The source code is converted to a jinja2.Template for passing parameters,
refer to jinja2 documentation for details

• chunksize (int, optional) – Number of rows per file, otherwise download the entire
dataset in a single one. If not None, the product becomes a directory

• io_handler (ploomber.io.CSVIO or ploomber.io.ParquetIO, optional) – io
handler to use (which controls the output format), currently only csv and parquet are sup-
ported. If None, it tries to infer the handler from the product’s extension if that doesn’t work,
it uses io.CSVIO

Examples

Spec API:

clients:
define a get function in clients.py that returns the client
SQLDump: clients.get

tasks:
script with a SELECT statement
- source: script.sql
product: data.parquet

Full spec API example.

Python API:

>>> import sqlite3
>>> import pandas as pd
>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import SQLDump

(continues on next page)

182 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/cookbook/sql-dump

ploomber, Release 0.23.1

(continued from previous page)

>>> from ploomber.clients import DBAPIClient
>>> con_raw = sqlite3.connect(database='my_db.db')
>>> df = pd.DataFrame({'a': range(100), 'b': range(100)})
>>> _ = df.to_sql('numbers', con_raw, index=False)
>>> con_raw.close()
>>> dag = DAG()
>>> client = DBAPIClient(sqlite3.connect, dict(database='my_db.db'))
>>> _ = SQLDump('SELECT * FROM numbers', File('data.parquet'),
... dag=dag, name='dump', client=client, chunksize=None)
>>> _ = dag.build()
>>> df = pd.read_parquet('data.parquet')
>>> df.head(3)

a b
0 0 0
1 1 1
2 2 2

Notes

The chunksize parameter is also set in cursor.arraysize object, this parameter can greatly speed up the dump for
some databases when the driver uses cursors.arraysize as the number of rows to fetch on a single network trip,
but this is driver-dependent, not all drivers implement this (cx_Oracle does it)

See also:

ploomber.clients.SQLScript A task to execute a SQL script and create a table/view as product

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load([key]) Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

2.6. API Reference 183

ploomber, Release 0.23.1

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load(key=None, **kwargs)
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

184 Chapter 2. Index

ploomber, Release 0.23.1

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

ploomber.tasks.SQLTransfer

class ploomber.tasks.SQLTransfer(source, product, dag, name=None, client=None, params=None,
chunksize=10000)

Transfers data from a SQL database to another (Note: this relies on pandas, only use it for small to medium size
datasets)

Parameters
• source (str or pathlib.Path) – SQL script source, if str, the content is interpreted as

the actual script, if pathlib.Path, the content of the file is loaded

• product (ploomber.products.product) – Product generated upon successful execution.
For SQLTransfer, usually product.client != task.client. task.client represents the data source
while product.client represents the data destination

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

• client (ploomber.clients.SQLAlchemyClient, optional) – The client used to con-
nect to the database. Only required if no dag-level client has been declared using
dag.clients[class]

• params (dict, optional) – Parameters to pass to the script, by default, the callable will
be executed with a “product” (which will contain the product object). It will also include
a “upstream” parameter if the task has upstream dependencies along with any parameters

2.6. API Reference 185

ploomber, Release 0.23.1

declared here. The source code is converted to a jinja2.Template for passing parameters,
refer to jinja2 documentation for details

• chunksize (int, optional) – Number of rows to transfer on every chunk

Notes

This task is not intended to move large datasets, but a convenience way of transfering small to medium size
datasets. It relies on pandas to read and write, which introduces a considerable overhead.

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load() Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load()
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters

186 Chapter 2. Index

ploomber, Release 0.23.1

• force (bool, default=False) – If True, mark status as WaitingExecu-
tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

continues on next page

2.6. API Reference 187

ploomber, Release 0.23.1

Table 23 – continued from previous page
upstream A mapping for upstream dependencies {task name}

-> [task object]

ploomber.tasks.SQLUpload

class ploomber.tasks.SQLUpload(source, product, dag, name=None, client=None, params=None,
chunksize=None, io_handler=None, to_sql_kwargs=None)

Upload data to a SQL database from a parquet or a csv file. Note: this task relies uses pandas.to_sql which
introduces some overhead. Only use it for small to medium size datasets. Each database usually come with a
tool to upload data efficiently. If you are using PostgreSQL, check out the PostgresCopyFrom task.

Parameters
• source (str or pathlib.Path) – Path to parquet or a csv file to upload

• product (ploomber.products.product) – Product generated upon successful execution.
The client for the product must be in the target database, where as task.client should be a client
in the source database.

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

• client (ploomber.clients.SQLAlchemyClient, optional) – The client used to con-
nect to the database and where the data will be uploaded. Only required if no dag-level client
has been declared using dag.clients[class]

• params (dict, optional) – Parameters to pass to the script, by default, the callable will
be executed with a “product” (which will contain the product object). It will also include
a “upstream” parameter if the task has upstream dependencies along with any parameters
declared here. The source code is converted to a jinja2.Template for passing parameters,
refer to jinja2 documentation for details

• chunksize (int, optional) – Number of rows to transfer on every chunk

• io_handler (callable, optional) – A Python callable to read the source file, if None,
it will tried to be inferred from the source file extension

• to_sql_kwargs (dict, optional) – Keyword arguments passed to the pan-
das.DataFrame.to_sql function, one useful parameter is “if_exists”, which determines
if the task should fail (“fail”), the relation should be replaced (“replace”) or rows appended
(“append”).

Notes

This task is not intended to move large datasets, but a convenience way of transfering small to medium size
datasets. It relies on pandas to read and write, which introduces a considerable overhead.

188 Chapter 2. Index

ploomber, Release 0.23.1

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load() Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load()
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

2.6. API Reference 189

ploomber, Release 0.23.1

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

190 Chapter 2. Index

ploomber, Release 0.23.1

ploomber.tasks.PostgresCopyFrom

class ploomber.tasks.PostgresCopyFrom(source, product, dag, name=None, client=None, params=None,
columns=None)

Efficiently copy data to a postgres database using COPY FROM (faster alternative to SQLUpload for postgres).
If using SQLAlchemy client for postgres is psycopg2. Replaces the table if exists.

Parameters
• source (str or pathlib.Path) – Path to parquet file to upload

• client (ploomber.clients.SQLAlchemyClient, optional) – The client used to con-
nect to the database and where the data will be uploaded. Only required if no dag-level client
has been declared using dag.clients[class]

Notes

Although this task does not depend on pandas for data i/o, it still needs it to dynamically create the table, after
the table is created the COPY statement is used to upload the data

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load() Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

2.6. API Reference 191

ploomber, Release 0.23.1

load()
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

continues on next page

192 Chapter 2. Index

ploomber, Release 0.23.1

Table 27 – continued from previous page
on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

ploomber.tasks.ShellScript

class ploomber.tasks.ShellScript(source, product, dag, name=None, client=None, params=None)
Execute a shell script.

Parameters
• source (str or pathlib.Path) – Script source, if str, the content is interpreted as the

actual script, if pathlib.Path, the content of the file is loaded. The souce code must have the
{{product}} tag

• product (ploomber.products.Product) – Product generated upon successful execution

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

• client (ploomber.clients.ShellClient or RemoteShellClient, optional) –
The client used to connect to the database. Only required if no dag-level client has been
declared using dag.clients[class]

• params (dict, optional) – Parameters to pass to the script, by default, the callable will
be executed with a “product” (which will contain the product object). It will also include
a “upstream” parameter if the task has upstream dependencies along with any parameters
declared here. The source code is converted to a jinja2.Template for passing parameters,
refer to jinja2 documentation for details

Examples

Spec API:

See here.

Python API:

>>> from pathlib import Path
>>> from ploomber import DAG
>>> from ploomber.tasks import ShellScript
>>> from ploomber.products import File
>>> code = "touch {{product['first']}}; touch {{product['second']}}"
>>> _ = Path('script.sh').write_text(code)
>>> dag = DAG()
>>> product = {'first': File('first.txt'), 'second': File('second.txt')}

(continues on next page)

2.6. API Reference 193

ploomber, Release 0.23.1

(continued from previous page)

>>> _ = ShellScript(Path('script.sh'), product, dag=dag)
>>> summary = dag.build()

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load() Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load()
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

194 Chapter 2. Index

ploomber, Release 0.23.1

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

2.6. API Reference 195

ploomber, Release 0.23.1

ploomber.tasks.DownloadFromURL

class ploomber.tasks.DownloadFromURL(source, product, dag, name=None, params=None)
Download a file from a URL (uses urllib.request.urlretrieve)

Parameters
• source (str) – URL to download the file from

• product (ploomber.products.File) – Product generated upon successful execution

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load() Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other[, group_name])

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load()
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

196 Chapter 2. Index

ploomber, Release 0.23.1

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other, group_name=None)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
continues on next page

2.6. API Reference 197

ploomber, Release 0.23.1

Table 31 – continued from previous page
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

ploomber.tasks.Link

class ploomber.tasks.Link(product, dag, name)
A dummy Task used to “plug” an external Product to a pipeline, this task is always considered up-to-date

The purpose of this Task is to link a pipeline to an external read-only file, this task does not do anything on the
dataset and the product is always considered up-to-date. There are two primary use cases: when the raw data is
automatically uploaded to a file (or table) and the pipeline does not have control over data updates, this task can
be used to link the pipeline to that file, without having to copy it, downstream tasks will see this dataset as just
another Product. The second use case is when developing a prediction pipeline. When making predictions on
new data, the pipeline might rely on existing data to generate features, this task can be used to point to such file
it can also be used to point to a serialized model, this last scenario is only recommended for prediction pipeline
that do not have strict performance requirements, unserializing models is an expensive operation, for real-time
predictions, the model should be kept in memory

Parameters
• product (ploomber.products.Product) – Product to link to the dag

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load() Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other)

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

198 Chapter 2. Index

ploomber, Release 0.23.1

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load()
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

2.6. API Reference 199

ploomber, Release 0.23.1

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

ploomber.tasks.Input

class ploomber.tasks.Input(product, dag, name)
A dummy task used to represent input provided by the user, it is always considered outdated.

When making new predictions, the user must submit some input data to build features and then feed the model,
this task can be used to point to such input. It does not perform any processing (read-only data) but it is always
considered outdated, which means it will always trigger execution.

Parameters
• product (ploomber.products.Product) – Product to to serve as input to the dag

• dag (ploomber.DAG) – A DAG to add this task to

• name (str) – A str to indentify this task. Should not already exist in the dag

200 Chapter 2. Index

ploomber, Release 0.23.1

Methods

build([force, catch_exceptions]) Build a single task
debug() Debug task, only implemented in certain tasks
load() Load task as pandas.DataFrame.
render([force, outdated_by_code, remote]) Renders code and product, all upstream tasks must

have been rendered first, for that reason, this
method will usually not be called directly but via
DAG.render(), which renders in the right order.

run() This is the only required method Task subclasses
must implement

set_upstream(other)

status([return_code_diff, sections]) Prints the current task status

build(force=False, catch_exceptions=True)
Build a single task

Although Tasks are primarily designed to execute via DAG.build(), it is possible to do so in isolation.
However, this only works if the task does not have any unrendered upstream dependencies, if that’s the
case, you should call DAG.render() before calling Task.build()

Returns A dictionary with keys ‘run’ and ‘elapsed’

Return type dict

Raises
• TaskBuildError – If the error failed to build because it has upstream dependencies, the

build itself failed or build succeded but on_finish hook failed

• DAGBuildEarlyStop – If any task or on_finish hook raises a DAGBuildEarlyStop error

debug()
Debug task, only implemented in certain tasks

load()
Load task as pandas.DataFrame. Only implemented in certain tasks

render(force=False, outdated_by_code=True, remote=False)
Renders code and product, all upstream tasks must have been rendered first, for that reason, this method
will usually not be called directly but via DAG.render(), which renders in the right order.

Render fully determines whether a task should run or not.

Parameters
• force (bool, default=False) – If True, mark status as WaitingExecu-

tion/WaitingUpstream even if the task is up-to-date (if there are any File(s) with
clients, this also ignores the status of the remote copy), otherwise, the normal process
follows and only up-to-date tasks are marked as Skipped.

• outdated_by_code (bool, default=True) – Factors to determine if Task.product is
marked outdated when source code changes. Otherwise just the upstream timestamps are
used.

• remote (bool, default=False) – Use remote metadata to determine status

2.6. API Reference 201

ploomber, Release 0.23.1

Notes

This method tries to avoid calls to check for product status whenever possible, since checking product’s
metadata can be a slow operation (e.g. if metadata is stored in a remote database)

When passing force=True, product’s status checking is skipped altogether, this can be useful when we only
want to quickly get a rendered DAG object to interact with it

run()
This is the only required method Task subclasses must implement

set_upstream(other)

status(return_code_diff=False, sections=None)
Prints the current task status

Parameters sections (list, optional) – Sections to include. Defaults to “name”,
“last_run”, “oudated”, “product”, “doc”, “location”

Attributes

PRODUCT_CLASSES_ALLOWED

client

exec_status

name A str that represents the name of the task, you can
access tasks in a dag using dag[‘some_name’]

on_failure Callable to be executed if task fails (passes Task as
first parameter and the exception as second parame-
ter)

on_finish Callable to be executed after this task is built success-
fully (passes Task as first parameter)

on_render

params dict that holds the parameter that will be passed to the
task upon execution.

product The product this task will create upon execution
source Source is used by the task to compute its output, for

most cases this is source code, for example Python-
Callable takes a function as source and SQLScript
takes a string with SQL code as source.

upstream A mapping for upstream dependencies {task name}
-> [task object]

202 Chapter 2. Index

ploomber, Release 0.23.1

Products

Product(identifier) Abstract class for all Products
File(identifier[, client]) A file (or directory) in the local filesystem
SQLRelation(identifier) A product that represents a SQL relation (table or view)

with no metadata (incremental builds won’t work).
PostgresRelation(identifier[, client]) A PostgreSQL relation
SQLiteRelation(identifier[, client]) A SQLite relation
GenericSQLRelation(identifier[, client]) A GenericProduct whose identifier is a SQL relation,

uses SQLite as metadata backend
GenericProduct(identifier[, client]) GenericProduct is used when there is no specific Product

implementation.

ploomber.products.Product

class ploomber.products.Product(identifier)
Abstract class for all Products

prepare_metadata
A hook to execute before saving metadata, should include a “metadata” parameter and might include “prod-
uct”. “metadata” will be a dictionary with the metadata to save, it is not recommended to change any of the
existing keys but additional key-value pairs might be included

Type callable

Methods

delete([force]) Deletes the product
download()

exists() This method returns True if the product exists, it is
not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs) Render Product - this will render contents of Tem-
plates used as identifier for this Product, if a regular
string was passed, this method has no effect

save_metadata(metadata)

to_json_serializable() Returns a JSON serializable version of this product
upload()

abstract delete(force=False)
Deletes the product

download()

abstract exists()
This method returns True if the product exists, it is not part of the metadata, so there is no cached status

abstract fetch_metadata()

2.6. API Reference 203

ploomber, Release 0.23.1

render(params, **kwargs)
Render Product - this will render contents of Templates used as identifier for this Product, if a regular string
was passed, this method has no effect

abstract save_metadata(metadata)

to_json_serializable()
Returns a JSON serializable version of this product

upload()

Attributes

client

task

ploomber.products.File

class ploomber.products.File(identifier, client=None)
A file (or directory) in the local filesystem

Parameters identifier (str or pathlib.Path) – The path to the file (or directory), can con-
tain placeholders (e.g. {{placeholder}})

Methods

delete([force]) Deletes the product
download()

exists() This method returns True if the product exists, it is
not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs) Render Product - this will render contents of Tem-
plates used as identifier for this Product, if a regular
string was passed, this method has no effect

save_metadata(metadata)

to_json_serializable() Returns a JSON serializable version of this product
upload()

delete(force=False)
Deletes the product

download()

exists()
This method returns True if the product exists, it is not part of the metadata, so there is no cached status

fetch_metadata()

204 Chapter 2. Index

ploomber, Release 0.23.1

render(params, **kwargs)
Render Product - this will render contents of Templates used as identifier for this Product, if a regular string
was passed, this method has no effect

save_metadata(metadata)

to_json_serializable()
Returns a JSON serializable version of this product

upload()

Attributes

client

task

ploomber.products.SQLRelation

class ploomber.products.SQLRelation(identifier)
A product that represents a SQL relation (table or view) with no metadata (incremental builds won’t work). See
ploomber.products.GenericSQLRelation if you want to enable incremental builds.

Parameters identifier (tuple of length 3) – A tuple with (schema, name, kind) where kind
must be either ‘table’ or ‘view’

See also:

ploomber.products.GenericSQLRelation SQL relation (table or view) that stores metadata (to enable in-
cremental builds) in a SQLite database.

Methods

delete([force]) Deletes the product
download()

exists() This method returns True if the product exists, it is
not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs) Render Product - this will render contents of Tem-
plates used as identifier for this Product, if a regular
string was passed, this method has no effect

save_metadata(metadata)

to_json_serializable() Returns a JSON serializable version of this product
upload()

delete(force=False)
Deletes the product

2.6. API Reference 205

ploomber, Release 0.23.1

download()

exists()
This method returns True if the product exists, it is not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs)
Render Product - this will render contents of Templates used as identifier for this Product, if a regular string
was passed, this method has no effect

save_metadata(metadata)

to_json_serializable()
Returns a JSON serializable version of this product

upload()

Attributes

client

kind

name

schema

task

ploomber.products.PostgresRelation

class ploomber.products.PostgresRelation(identifier, client=None)
A PostgreSQL relation

Parameters
• identifier (tuple of length 3) – A tuple with (schema, name, kind) where kind must

be either ‘table’ or ‘view’

• client (ploomber.clients.DBAPIClient or SQLAlchemyClient, optional) –
The client used to connect to the database. Only required if no dag-level client has been
declared using dag.clients[class]

206 Chapter 2. Index

ploomber, Release 0.23.1

Examples

>>> from ploomber.products import PostgresRelation
>>> relation = PostgresRelation(('schema', 'some_table', 'table'))
>>> str(relation) # returns qualified name
'schema.some_table'

Methods

delete([force]) Deletes the product
download()

exists() This method returns True if the product exists, it is
not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs) Render Product - this will render contents of Tem-
plates used as identifier for this Product, if a regular
string was passed, this method has no effect

save_metadata(metadata)

to_json_serializable() Returns a JSON serializable version of this product
upload()

delete(force=False)
Deletes the product

download()

exists()
This method returns True if the product exists, it is not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs)
Render Product - this will render contents of Templates used as identifier for this Product, if a regular string
was passed, this method has no effect

save_metadata(metadata)

to_json_serializable()
Returns a JSON serializable version of this product

upload()

2.6. API Reference 207

ploomber, Release 0.23.1

Attributes

client

kind

name

schema

task

ploomber.products.SQLiteRelation

class ploomber.products.SQLiteRelation(identifier, client=None)
A SQLite relation

Parameters
• identifier (tuple of length 3 or 2) – A tuple with (schema, name, kind) where

kind must be either ‘table’ or ‘view’. If passed a tuple with length 2, schema is assumed
None. Schemas in SQLite represent other databases when using the ATTACH command.

• client (ploomber.clients.DBAPIClient or SQLAlchemyClient, optional) –
The client used to connect to the database. Only required if no dag-level client has been
declared using dag.clients[class]

Examples

>>> from ploomber.products import SQLiteRelation
>>> relation = SQLiteRelation(('schema', 'some_table', 'table'))
>>> str(relation) # returns qualified name
'schema.some_table'

Methods

delete() Deletes the product
download()

exists() This method returns True if the product exists, it is
not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs) Render Product - this will render contents of Tem-
plates used as identifier for this Product, if a regular
string was passed, this method has no effect

save_metadata(metadata)

continues on next page

208 Chapter 2. Index

ploomber, Release 0.23.1

Table 45 – continued from previous page
to_json_serializable() Returns a JSON serializable version of this product
upload()

delete()
Deletes the product

download()

exists()
This method returns True if the product exists, it is not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs)
Render Product - this will render contents of Templates used as identifier for this Product, if a regular string
was passed, this method has no effect

save_metadata(metadata)

to_json_serializable()
Returns a JSON serializable version of this product

upload()

Attributes

client

kind

name Used as identifier in the database
schema

task

ploomber.products.GenericSQLRelation

class ploomber.products.GenericSQLRelation(identifier, client=None)
A GenericProduct whose identifier is a SQL relation, uses SQLite as metadata backend

Parameters
• identifier (tuple of length 3) – A tuple with (schema, name, kind) where kind must

be either ‘table’ or ‘view’

• client (ploomber.clients.DBAPIClient or SQLAlchemyClient, optional) –
The client used to store metadata for this product. Only required if no dag-level client has
been declared using dag.clients[class]

See also:

ploomber.products.SQRelation SQL relation (table or view) with no metadata.

2.6. API Reference 209

ploomber, Release 0.23.1

Methods

delete([force]) Deletes the product
download()

exists() This method returns True if the product exists, it is
not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs) Render Product - this will render contents of Tem-
plates used as identifier for this Product, if a regular
string was passed, this method has no effect

save_metadata(metadata)

to_json_serializable() Returns a JSON serializable version of this product
upload()

delete(force=False)
Deletes the product

download()

exists()
This method returns True if the product exists, it is not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs)
Render Product - this will render contents of Templates used as identifier for this Product, if a regular string
was passed, this method has no effect

save_metadata(metadata)

to_json_serializable()
Returns a JSON serializable version of this product

upload()

Attributes

client

kind

name Used as identifier in the database
schema

task

210 Chapter 2. Index

ploomber, Release 0.23.1

ploomber.products.GenericProduct

class ploomber.products.GenericProduct(identifier, client=None)
GenericProduct is used when there is no specific Product implementation. Sometimes it is technically possible
to write a Product implementation but if you don’t want to do it you can use this one. Other times is is not
possible to provide a concrete Product implementation (e.g. we cannot store arbitrary metadata in a Hive table).
GenericProduct works as any other product but its metadata is stored not in the Product itself but in a different
backend.

Parameters
• identifier (str) – An identifier fot this product, can contain placeholders (e.g. {{place-

holder}})

• client (ploomber.clients.DBAPIClient or SQLAlchemyClient, optional) –
The client used to store metadata for this product. Only required if no dag-level client has
been declared using dag.clients[class]

Notes

exists does not check for product existence, just checks if metadata exists delete does not perform actual deletion,
just deletes metadata

Methods

delete([force]) Deletes the product
download()

exists() This method returns True if the product exists, it is
not part of the metadata, so there is no cached status

fetch_metadata()

render(params, **kwargs) Render Product - this will render contents of Tem-
plates used as identifier for this Product, if a regular
string was passed, this method has no effect

save_metadata(metadata)

to_json_serializable() Returns a JSON serializable version of this product
upload()

delete(force=False)
Deletes the product

download()

exists()
This method returns True if the product exists, it is not part of the metadata, so there is no cached status

fetch_metadata()

2.6. API Reference 211

ploomber, Release 0.23.1

render(params, **kwargs)
Render Product - this will render contents of Templates used as identifier for this Product, if a regular string
was passed, this method has no effect

save_metadata(metadata)

to_json_serializable()
Returns a JSON serializable version of this product

upload()

Attributes

client

name Used as identifier in the database
task

Clients

Client() Abstract class for all clients
DBAPIClient(connect_fn, connect_kwargs[, . . .]) A client for a PEP 249 compliant client library
SQLAlchemyClient(uri[, split_source, . . .]) Client for connecting with any SQLAlchemy supported

database
ShellClient([run_template, . . .]) Client to run command in the local shell
S3Client(bucket_name, parent[, . . .]) Client for uploading File products to Amazon S3
GCloudStorageClient(bucket_name, parent[, . . .]) Client for uploading File products to Google Cloud Stor-

age

ploomber.clients.Client

class ploomber.clients.Client
Abstract class for all clients

Clients are classes that communicate with another system (usually a database), they provide a thin wrapper around
libraries that implement clients to avoid managing connections directly. The most common use case by far is for
a Task/Product to submit some code to a system, a client just provides a way of doing so without dealing with
connection details.

A Client is reponsible for making sure an open connection is available at any point (open a connection if none is
available).

However, clients are not strictly necessary, a Task/Product could manage their own client connections. For
example the NotebookRunner task does have a Client since it only calls an external library to run.

212 Chapter 2. Index

ploomber, Release 0.23.1

Notes

Method’s names were chosen to resemble the ones in the Python DB API Spec 2.0 (PEP 249)

Methods

close() Close connection if there is one active
execute(code) Execute code

abstract close()
Close connection if there is one active

abstract execute(code)
Execute code

Attributes

connection Return a connection, open one if there isn’t any

ploomber.clients.DBAPIClient

class ploomber.clients.DBAPIClient(connect_fn, connect_kwargs, split_source=None)
A client for a PEP 249 compliant client library

Parameters
• connect_fn (callable) – The function to use to open the connection

• connect_kwargs (dict) – Keyword arguments to pass to connect_fn

• split_source (str, optional) – Some database drivers do not support multiple com-
mands in a single execute statement. Use this optiion to split commands by a given character
(e.g. ‘;’) and send them one at a time. Defaults to None (no splitting)

Examples

Spec API:

Given the following clients.py:

import sqlite3
from ploomber.clients import DBAPIClient

def get():
return DBAPIClient(sqlite3.connect, dict(database='my.db'))

Spec API (dag-level client):

clients:
key is a task class such as SQLDump or SQLScript
SQLDump: clients.get

(continues on next page)

2.6. API Reference 213

ploomber, Release 0.23.1

(continued from previous page)

tasks:
- source: query.sql

product: output/data.csv

Spec API (task-level client):

tasks:
- source: query.sql

product: output/data.csv
client: clients.get

Python API (dag-level client):

>>> import sqlite3
>>> import pandas as pd
>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import SQLDump
>>> from ploomber.clients import DBAPIClient
>>> con_raw = sqlite3.connect(database='my.db')
>>> df = pd.DataFrame({'a': range(100), 'b': range(100)})
>>> _ = df.to_sql('numbers', con_raw, index=False)
>>> con_raw.close()
>>> dag = DAG()
>>> client = DBAPIClient(sqlite3.connect, dict(database='my.db'))
>>> dag.clients[SQLDump] = client # dag-level client
>>> _ = SQLDump('SELECT * FROM numbers', File('data.parquet'),
... dag=dag, name='dump',
... client=client,
... chunksize=None) # no need to pass client here
>>> _ = dag.build()
>>> df = pd.read_parquet('data.parquet')
>>> df.head(3)

a b
0 0 0
1 1 1
2 2 2

Python API (task-level client):

>>> import sqlite3
>>> import pandas as pd
>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import SQLDump
>>> from ploomber.clients import DBAPIClient
>>> con_raw = sqlite3.connect(database='some.db')
>>> df = pd.DataFrame({'a': range(100), 'b': range(100)})
>>> _ = df.to_sql('numbers', con_raw, index=False)
>>> con_raw.close()
>>> dag = DAG()
>>> client = DBAPIClient(sqlite3.connect, dict(database='some.db'))

(continues on next page)

214 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

>>> _ = SQLDump('SELECT * FROM numbers', File('data.parquet'),
... dag=dag, name='dump',
... client=client, # pass client to task
... chunksize=None)
>>> _ = dag.build()
>>> df = pd.read_parquet('data.parquet')
>>> df.head(3)

a b
0 0 0
1 1 1
2 2 2

See also:

ploomber.clients.SQLAlchemyClient A client to connect to a database using sqlalchemy as backend

Methods

close() Close connection if there is an active one
cursor()

execute(code) Execute code with the existing connection

close()
Close connection if there is an active one

cursor()

execute(code)
Execute code with the existing connection

Attributes

connection Return a connection, open one if there isn’t any

ploomber.clients.SQLAlchemyClient

class ploomber.clients.SQLAlchemyClient(uri, split_source='default', create_engine_kwargs=None)
Client for connecting with any SQLAlchemy supported database

Parameters
• uri (str or sqlalchemy.engine.url.URL) – URI to pass to sqlalchemy.create_engine

or URL object created using sqlalchemy.engine.url.URL.create

• split_source (str, optional) – Some database drivers do not support multiple com-
mands in a single execute statement. Use this option to split commands by a given character
(e.g. ‘;’) and send them one at a time. Defaults to ‘default’, which splits by ‘;’ if using
SQLite database, but does not perform any splitting with other databases. If None, it will
never split, a string value is interpreted as the token to use for splitting statements regardless
of the database type

2.6. API Reference 215

ploomber, Release 0.23.1

• create_engine_kwargs (dict, optional) – Keyword arguments to pass to
sqlalchemy.create_engine

Notes

SQLite client does not support sending more than one command at a time, if using such backend code will be
split and several calls to the db will be performed.

Examples

Spec API:

Given the following clients.py:

import sqlalchemy
from ploomber.clients import SQLAlchemyClient

def get():
url = sqlalchemy.engine.url.URL.create(drivername='sqlite',

database='my_db.db')
return SQLAlchemyClient(url)

Spec API (dag-level client):

clients:
key is a task class such as SQLDump or SQLScript
SQLDump: clients.get

tasks:
- source: query.sql

product: output/data.csv

Spec API (task-level client):

tasks:
- source: query.sql

product: output/data.csv
client: clients.get

Python API (dag-level client):

>>> import sqlite3
>>> import sqlalchemy
>>> import pandas as pd
>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import SQLDump
>>> from ploomber.clients import SQLAlchemyClient
>>> con_raw = sqlite3.connect(database='my.db')
>>> df = pd.DataFrame({'a': range(100), 'b': range(100)})
>>> _ = df.to_sql('numbers', con_raw, index=False)
>>> con_raw.close()
>>> dag = DAG()

(continues on next page)

216 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

>>> url = sqlalchemy.engine.url.URL.create(drivername='sqlite',
... database='my.db')
>>> client = SQLAlchemyClient(url)
>>> dag.clients[SQLDump] = client # dag-level client
>>> _ = SQLDump('SELECT * FROM numbers', File('data.parquet'),
... dag=dag, name='dump',
... chunksize=None) # no need to pass client here
>>> _ = dag.build()
>>> df = pd.read_parquet('data.parquet')
>>> df.head(3)

a b
0 0 0
1 1 1
2 2 2

Python API (task-level client):

>>> import sqlite3
>>> import sqlalchemy
>>> import pandas as pd
>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import SQLDump
>>> from ploomber.clients import SQLAlchemyClient
>>> con_raw = sqlite3.connect(database='some.db')
>>> df = pd.DataFrame({'a': range(100), 'b': range(100)})
>>> _ = df.to_sql('numbers', con_raw, index=False)
>>> con_raw.close()
>>> dag = DAG()
>>> url = sqlalchemy.engine.url.URL.create(drivername='sqlite',
... database='some.db')
>>> client = SQLAlchemyClient(url)
>>> _ = SQLDump('SELECT * FROM numbers', File('data.parquet'),
... dag=dag, name='dump',
... client=client, # pass client to task
... chunksize=None)
>>> _ = dag.build()
>>> df = pd.read_parquet('data.parquet')
>>> df.head(3)

a b
0 0 0
1 1 1
2 2 2

See also:

ploomber.clients.DBAPIClient A client to connect to a database

2.6. API Reference 217

ploomber, Release 0.23.1

Methods

close() Closes all connections
cursor()

execute(code) Execute code

close()
Closes all connections

cursor()

execute(code)
Execute code

Attributes

connection Return a connection from the pool
engine Returns a SQLAlchemy engine
split_source_mapping

ploomber.clients.ShellClient

class ploomber.clients.ShellClient(run_template='bash {{path_to_code}}',
subprocess_run_kwargs={'shell': False, 'stderr': - 1, 'stdout': - 1})

Client to run command in the local shell

Parameters
• run_template (str) – Template for executing commands, must include the

{{path_to_code}} placeholder which will point to the rendered code. Defaults to
‘bash {{path_to_code}}’

• subprocess_run_kwargs (dict) – Keyword arguments to pass to the subprocess.run when
running run_template

Methods

close() Close connection if there is one active
execute(code) Run code

close()
Close connection if there is one active

execute(code)
Run code

218 Chapter 2. Index

ploomber, Release 0.23.1

Attributes

connection Return a connection, open one if there isn’t any

ploomber.clients.S3Client

class ploomber.clients.S3Client(bucket_name, parent, json_credentials_path=None,
path_to_project_root=None, credentials_relative_to_project_root=True,
**kwargs)

Client for uploading File products to Amazon S3

Parameters
• bucket_name (str) – Bucket to use

• parent (str) – Parent folder in the bucket to store files. For example, if parent='path/
to', and a product in your pipeline is out/data.csv, your file will appear in the bucket at
path/to/out/data.csv.

• json_credentials_path (str, default=None) – JSON file to authenticate the client.
Must contain aws_access_key_id and aws_secret_access_key. If None, client is ini-
tialized without arguments (i.e., boto3.client('s3'))

• path_to_project_root (str, default=None) – Path to project root. If None, looks it
up automatically and assigns it to the parent folder of your pipeline.yaml spec or setup.
py (if your project is a package). This determines the path in remote storage. For example, if
path_to_project_root is /my-project, you’re storing a product at /my-project/out/
data.csv, and parent='some-dir', the file will be stored in the bucket at some-dir/
out/data.csv (we first compute the path of your product relative to the project root, then
prefix it with parent).

• credentials_relative_to_project_root (bool, default=True) – If True, relative
paths in json_credentials_path are so to the path_to_project_root, instead of the
current working directory

• **kwargs – Keyword arguments for the client constructor

Examples

Spec API:

Given the following clients.py:

import sqlalchemy
from ploomber.clients import S3Client

def get():
return S3Client(bucket_name='my-bucket', parent='my-pipeline')

Spec API (dag-level client):

clients:
all files from all tasks will be uploaded
File: clients.get

(continues on next page)

2.6. API Reference 219

ploomber, Release 0.23.1

(continued from previous page)

tasks:
- source: notebook.ipynb

product: output/report.html

Spec API (dag-level client, custom arguments):

clients:
if your get function takes arguments, pass them like this
File:

dotted_path: clients.get
arg: value
...

tasks:
- source: notebook.ipynb

product: output/report.html

Spec API (product-level client):

tasks:
- source: notebook.ipynb

product_client: clients.get
outputs from this task will be uploaded
product: output/report.html

Python API (dag-level client):

>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import PythonCallable
>>> from ploomber.clients import S3Client
>>> dag = DAG()
>>> client = S3Client(bucket_name='my-bucket', parent='my-pipeline',
... path_to_project_root='.')
>>> dag.clients[File] = client # dag-level client
>>> dag = DAG()
>>> def my_function(product):
... Path(product).touch()
>>> _ = PythonCallable(my_function, File('file.txt'), dag=dag)
>>> dag.build()

Python API (product-level client):

>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import PythonCallable
>>> from ploomber.clients import S3Client
>>> dag = DAG()
>>> client = S3Client(bucket_name='my-bucket', parent='my-pipeline',
... path_to_project_root='.')
>>> dag = DAG()
>>> def my_function(product):
... Path(product).touch()

(continues on next page)

220 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

>>> product = File('file.txt', client=client)
>>> _ = PythonCallable(my_function, product, dag=dag)
>>> dag.build()

See also:

ploomber.clients.GCloudStorageClient Client for uploading products to Google Cloud Storage

Notes

If a notebook (or script) task fails, the partially executed .ipynb file will be uploaded using this client.

Methods

close()

download(local[, destination]) Download remote copy of a given local path.
upload(local) Upload file or folder from a local path by calling _up-

load as needed

close()

download(local, destination=None)
Download remote copy of a given local path. Local may be a file or a folder (all contents downloaded).

Parameters
• local – Path to local file or folder whose remote copy will be downloaded

• destination – Download location. If None, overwrites local copy

upload(local)
Upload file or folder from a local path by calling _upload as needed

Parameters local – Path to local file or folder to upload

Attributes

parent Parent where all products are stored

ploomber.clients.GCloudStorageClient

class ploomber.clients.GCloudStorageClient(bucket_name, parent, json_credentials_path=None,
path_to_project_root=None,
credentials_relative_to_project_root=True, **kwargs)

Client for uploading File products to Google Cloud Storage

Parameters
• bucket_name (str) – Bucket to use

2.6. API Reference 221

ploomber, Release 0.23.1

• parent (str) – Parent folder in the bucket to store files. For example, if parent='path/
to', and a product in your pipeline is out/data.csv, your file will appea in the bucket at
path/to/out/data.csv.

• json_credentials_path (str, default=None) – Use the given JSON file to authen-
ticate the client (uses Client.from_service_account_json(**kwargs)), if None, ini-
tializes the client using Client(**kwargs)

• path_to_project_root (str, default=None) – Path to project root. If None, looks it
up automatically and assigns it to the parent folder of your pipeline.yaml spec or setup.
py (if your project is a package). This determines the path in remote storage. For example, if
path_to_project_root is /my-project, you’re storing a product at /my-project/out/
data.csv, and parent='some-dir', the file will be stored in the bucket at some-dir/
out/data.csv (we first compute the path of your product relative to the project root, then
prefix it with parent).

• credentials_relative_to_project_root (bool, default=True) – If True, relative
paths in json_credentials_path are so to the path_to_project_root, instead of the
current working directory

• **kwargs – Keyword arguments for the client constructor

Examples

Spec API:

Given the following clients.py:

import sqlalchemy
from ploomber.clients import GCloudStorageClient

def get():
return GCloudStorageClient(bucket_name='my-bucket',

parent='my-pipeline')

Spec API (dag-level client):

clients:
all files from all tasks will be uploaded
File: clients.get

tasks:
- source: notebook.ipynb

product: output/report.html

Spec API (dag-level client, custom arguments):

clients:
if your get function takes arguments, pass them like this
File:

dotted_path: clients.get
arg: value
...

tasks:
(continues on next page)

222 Chapter 2. Index

ploomber, Release 0.23.1

(continued from previous page)

- source: notebook.ipynb
product: output/report.html

Spec API (product-level client):

tasks:
- source: notebook.ipynb

product_client: clients.get
outputs from this task will be uploaded
product: output/report.html

Python API (dag-level client):

>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import PythonCallable
>>> from ploomber.clients import GCloudStorageClient
>>> dag = DAG()
>>> client = GCloudStorageClient(bucket_name='my-bucket',
... parent='my-pipeline',
... path_to_project_root='.')
>>> dag.clients[File] = client # dag-level client
>>> dag = DAG()
>>> def my_function(product):
... Path(product).touch()
>>> _ = PythonCallable(my_function, File('file.txt'), dag=dag)
>>> dag.build()

Python API (product-level client):

>>> from ploomber import DAG
>>> from ploomber.products import File
>>> from ploomber.tasks import PythonCallable
>>> from ploomber.clients import GCloudStorageClient
>>> dag = DAG()
>>> client = GCloudStorageClient(bucket_name='my-bucket',
... parent='my-pipeline',
... path_to_project_root='.')
>>> dag = DAG()
>>> def my_function(product):
... Path(product).touch()
>>> product = File('file.txt', client=client)
>>> _ = PythonCallable(my_function, product, dag=dag)
>>> dag.build()

See also:

ploomber.clients.S3Client Client for uploading products to Amazon S3

2.6. API Reference 223

ploomber, Release 0.23.1

Notes

Complete example using the Spec API

If a notebook (or script) task fails, the partially executed .ipynb file will be uploaded using this client.

Methods

close()

download(local[, destination]) Download remote copy of a given local path.
upload(local) Upload file or folder from a local path by calling _up-

load as needed

close()

download(local, destination=None)
Download remote copy of a given local path. Local may be a file or a folder (all contents downloaded).

Parameters
• local – Path to local file or folder whose remote copy will be downloaded

• destination – Download location. If None, overwrites local copy

upload(local)
Upload file or folder from a local path by calling _upload as needed

Parameters local – Path to local file or folder to upload

Attributes

parent Parent where all products are stored

Spec

DAGSpec(data[, env, lazy_import, reload, . . .]) A DAG spec is a dictionary with certain structure that
can be converted to a DAG using DAGSpec.to_dag().

ploomber.spec.DAGSpec

class ploomber.spec.DAGSpec(data, env=None, lazy_import=False, reload=False, parent_path=None)
A DAG spec is a dictionary with certain structure that can be converted to a DAG using DAGSpec.to_dag().

There are two cases: the simplest one is just a dictionary with a “location” key with the factory to call, the other
explicitly describes the DAG structure as a dictionary.

When .to_dag() is called, the current working directory is temporarily switched to the spec file parent folder
(only applies when loading from a file)

Parameters

224 Chapter 2. Index

https://github.com/ploomber/projects/tree/master/templates/google-cloud

ploomber, Release 0.23.1

• data (str, pathlib.Path or dict) – Path to a YAML spec or dict spec. If loading
from a file, sources and products are resolved to the file’s parent. If the file is in a packaged
structure (i.e., src/package/pipeline.yaml), the existence of a setup.py in the same folder as
src/ is validated. If loaded from a dict, sources and products aren’t resolved, unless a par-
ent_path is not None.

• env (dict, pathlib.path or str, optional) – If path it must be a YAML file. En-
vironment to load. Any string with the format ‘{{placeholder}}’ in the spec is replaced by
the corresponding value in the given key (i.e., placeholder). If env is None and spec is a dict,
no env is loaded. If None and loaded from a YAML file, an env.yaml file is loaded from
the current working diirectory, if it doesn’t exist, it is loaded from the YAML spec parent
folder. If none of these exist, no env is loaded. A ploomber.Env object is initialized, see
documentation for details.

• lazy_import (bool, optional) – Whether to import dotted paths to initialize Python-
Callables with the actual function. If False, PythonCallables are initialized directly with the
dotted path, which means some verifications such as import statements in that function’s
module are delayed until the pipeline is executed. This also applies to placeholders loaded
using a SourceLoader, if a template exists, it will return the path to it, instead of initializing
it, if it doesn’t, it will return None instead of raising an error. This setting is useful when
we require to load YAML spec and instantiate the DAG object to extract information from it
(e.g., which are the declared tasks) but the process running it may not have all the required
dependencies to do so (e.g., an imported library in a PythonCallable task).

• reload (bool, optional) – Reloads modules before importing dotted paths to detect code
changes if the module has already been imported. Has no effect if lazy_import=True.

Examples

Load from pipeline.yaml:

>>> from ploomber.spec import DAGSpec
>>> spec = DAGSpec('spec/pipeline.yaml') # load spec
>>> dag = spec.to_dag() # convert to DAG
>>> status = dag.status()

Override env.yaml:

>>> from ploomber.spec import DAGSpec
>>> spec = DAGSpec('spec/pipeline.yaml', env=dict(key='value'))
>>> dag = spec.to_dag()
>>> status = dag.status()

See also:

ploomber.DAG Pipeline internal representation, implements the methods in the command-line interface (e.g.,
DAG.build(), or DAG.plot)

path
Returns the path used to load the data. None if loaded from a dictionary

Type str or None

2.6. API Reference 225

ploomber, Release 0.23.1

Methods

clear()

find([env, reload, lazy_import, . . .]) Automatically find pipeline.yaml and return a
DAGSpec object, which can be converted to a DAG
using .to_dag()

from_directory(path_to_dir) Construct a DAGSpec from a directory.
from_files(files) Construct DAGSpec from list of files or glob-like pat-

tern.
get(k[,d])

items()

keys()

pop(k[,d]) If key is not found, d is returned if given, otherwise
KeyError is raised.

popitem() as a 2-tuple; but raise KeyError if D is empty.
setdefault(k[,d])

to_dag() Converts the DAG spec to a DAG object
update([E,]**F) If E present and has a .keys() method, does: for k in

E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is
followed by: for k, v in F.items(): D[k] = v

values()

clear()→ None. Remove all items from D.

classmethod find(env=None, reload=False, lazy_import=False, starting_dir=None, name=None)
Automatically find pipeline.yaml and return a DAGSpec object, which can be converted to a DAG using
.to_dag()

Parameters
• env – The environment to pass to the spec

• name (str, default=None) – Filename to search for. If None, it looks for a pipeline.yaml
file, otherwise it looks for a file with such name.

classmethod from_directory(path_to_dir)
Construct a DAGSpec from a directory. Product and upstream are extracted from sources

Parameters path_to_dir (str) – The directory to use. Looks for scripts (.py, .R or .ipynb)
in the directory and interprets them as task sources, file names are assigned as task names
(without extension). The spec is generated with the default values in the “meta” section.
Ignores files with invalid extensions.

226 Chapter 2. Index

ploomber, Release 0.23.1

Notes

env is not supported because the spec is generated from files in path_to_dir, hence, there is no way to
embed tags

classmethod from_files(files)
Construct DAGSpec from list of files or glob-like pattern. Product and upstream are extracted from sources

Parameters files (list or str) – List of files to use or glob-like string pattern. If glob-like
pattern, ignores directories that match the criteria.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

to_dag()
Converts the DAG spec to a DAG object

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D’s values

Attributes

path

Env

with_env(source) A function decorated with @with_env that starts and en-
vironment during the execution of a function.

load_env(fn) A function decorated with @load_env will be called
with the current environment in an env keyword argu-
ment

Env([source]) Return the current environment

2.6. API Reference 227

ploomber, Release 0.23.1

ploomber.with_env

ploomber.with_env(source)
A function decorated with @with_env that starts and environment during the execution of a function.

Notes

The first argument of a function decorated with @with_env must be named “env”, the env will be passed auto-
matically when calling the function. The original function’s signature is edited.

You can replace values in the environment, e.g. if you want to replace env.key.another, you can call the decorated
function with: my_fn(env__key__another=’my_new_value’)

The environment is resolved at import time, changes to the working directory will not affect initialization.

Examples

ploomber.load_env

ploomber.load_env(fn)
A function decorated with @load_env will be called with the current environment in an env keyword argument

ploomber.Env

class ploomber.Env(source=None)
Return the current environment

NOTE: this API is experimental and subject to change, it is recommmended to use @with_env and @load_env
decorators instead

Env provides a clean and consistent way of managing environment and configuration settings. Its simplest usage
provides access to settings specified via an env.yaml.

Settings managed by Env are intended to be runtime constant (they are NOT intended to be used as global
variables). For example you might want to store database URIs. Storing sensitive information is discouraged as
yaml files are plain text. Use keyring for that instead.

All sections are optional, but if there is a path section, all values inside that section will be casted to pathlib.Path
objects, expanduser() is applied so “~” can be used. Strings with a trailing “/” will be interpreted as directories
and they will be created if they do not exist

There are a few placeholders available: * {{user}} expands to the current user (by calling getpass.getuser()) *
{{version}} expands to module.__version__ if _module is defined * {{git}} expands to branch name if at the
tip, otherwise to the current commit hash (_module has to be defined)

228 Chapter 2. Index

ploomber, Release 0.23.1

Examples

>>> from ploomber import Env
>>> env = Env({'db': {'uri': 'my_uri'}, 'path': {'raw': '/path/to/raw'}})
>>> env.db.uri
'my_uri'
>>> env.path.raw
PosixPath('/path/to/raw')

Notes

Envs are intended to be short-lived, the recommended usage is to start and end them only during the execution
of a function that builds a DAG by using the @with_env and @load_env decorators

Methods

end() End environment.
load()

classmethod end()
End environment. Usage is discouraged, a single environment is expected to exist during the entire Python
process lifespan to avoid inconsistencies, use it only if you have a very strong reason to

classmethod load()

Attributes

name

Serialization

serializer([extension_mapping, fallback, . . .]) Decorator for serializing functions
serializer_pickle(obj, product) A serializer that pickles everything
unserializer([extension_mapping, fallback, . . .]) Decorator for unserializing functions
unserializer_pickle(product) An unserializer that unpickles everything

2.6. API Reference 229

ploomber, Release 0.23.1

ploomber.io.serializer

ploomber.io.serializer(extension_mapping=None, *, fallback=False, defaults=None, unpack=False)
Decorator for serializing functions

Parameters
• extension_mapping (dict, default=None) – An extension -> function mapping. Call-

ing the decorated function with a File of a given extension will use the one in the mapping
if it exists, e.g., {‘.csv’: to_csv, ‘.json’: to_json}.

• fallback (bool or str, default=False) – Determines what method to use if exten-
sion_mapping does not match the product to serialize. Valid values are True (uses the pickle
module), ‘joblib’, and ‘cloudpickle’. If you use any of the last two, the corresponding moduel
must be installed. If this is enabled, the body of the decorated function is never executed. To
turn it off pass False.

• defaults (list, default=None) – Built-in serializing functions to use. Must be a list
with any combinations of values: ‘.txt’, ‘.json’, ‘.csv’, ‘.parquet’. To save to .txt, the returned
object must be a string, for .json it must be a json serializable object (e.g., a list or a dict), for
.csv and .parquet it must be a pandas.DataFrame. If using .parquet, a parquet library must
be installed (e.g., pyarrow). If extension_mapping and defaults contain overlapping keys, an
error is raised

• unpack (bool, default=False) – If True, it treats every element in a dictionary as a
different file, calling the serializing function one per (key, value) pair and using the key as
filename.

ploomber.io.serializer_pickle

ploomber.io.serializer_pickle(obj, product)
A serializer that pickles everything

ploomber.io.unserializer

ploomber.io.unserializer(extension_mapping=None, *, fallback=False, defaults=None, unpack=False)
Decorator for unserializing functions

Parameters
• extension_mapping (dict, default=None) – An extension -> function mapping. Call-

ing the decorated function with a File of a given extension will use the one in the mapping
if it exists, e.g., {‘.csv’: from_csv, ‘.json’: from_json}.

• fallback (bool or str, default=False) – Determines what method to use if exten-
sion_mapping does not match the product to unserialize. Valid values are True (uses the
pickle module), ‘joblib’, and ‘cloudpickle’. If you use any of the last two, the correspond-
ing moduel must be installed. If this is enabled, the body of the decorated function is never
executed. To turn it off pass False.

• defaults (list, default=None) – Built-in unserializing functions to use. Must be a list
with any combinations of values: ‘.txt’, ‘.json’, ‘.csv’, ‘.parquet’. Unserializing .txt, returns
a string, for .json returns any JSON-unserializable object (e.g., a list or a dict), .csv and

230 Chapter 2. Index

ploomber, Release 0.23.1

.parquet return a pandas.DataFrame. If using .parquet, a parquet library must be installed
(e.g., pyarrow). If extension_mapping and defaults contain overlapping keys, an error is
raises

• unpack (bool, default=False) – If True and the task product points to a directory, it
will call the unserializer one time per file in the directory. The unserialized object will be
a dictionary where keys are the filenames and values are the unserialized objects. Note that
this isn’t recursive, it only looks at files that are immediate children of the product directory.

ploomber.io.unserializer_pickle

ploomber.io.unserializer_pickle(product)
An unserializer that unpickles everything

Executors

Serial([build_in_subprocess, . . .]) Executor than runs one task at a time
Parallel([processes, print_progress, . . .]) Runs a DAG in parallel using multiprocessing

ploomber.executors.Serial

class ploomber.executors.Serial(build_in_subprocess=True, catch_exceptions=True,
catch_warnings=True)

Executor than runs one task at a time

Parameters
• build_in_subprocess (bool, optional) – Determines whether tasks should be exe-

cuted in a subprocess or in the current process. For pipelines with a lot of PythonCallables
loading large objects such as pandas.DataFrame, this option is recommended as it guarantees
that memory will be cleared up upon task execution. Defaults to True.

• catch_exceptions (bool, optional) – Whether to catch exceptions raised when build-
ing tasks and running hooks. If True, exceptions are collected and displayed at the end,
downstream tasks of failed ones are aborted (not executed at all), If any task raises a DAG-
BuildEarlyStop exception, the final exception raised will be of such type. If False, no catching
is done, on_failure won’t be executed and task status will not be updated and tracebacks from
build and hooks won’t be logged. Setting of to False is only useful for debugging purposes.

• catch_warnings (bool, optional) – If True, the executor catches all warnings raised
by tasks and displays them at the end of execution. If catch_exceptions is True and there
is an error building the DAG, capture warnings are still shown before raising the collected
exceptions.

2.6. API Reference 231

ploomber, Release 0.23.1

Examples

Spec API:

add at the top of your pipeline.yaml
executor: serial

tasks:
- source: script.py
nb_product_key: [nb_ipynb, nb_html]
product:

nb_ipynb: nb.ipynb
nb_html: report.html

Python API:

>>> from ploomber import DAG
>>> from ploomber.executors import Serial
>>> dag = DAG(executor='parallel') # use with default values
>>> dag = DAG(executor=Serial(build_in_subprocess=False)) # customize

DAG can exit gracefully on function tasks (PythonCallable):

>>> from ploomber.products import File
>>> from ploomber.tasks import PythonCallable
>>> from ploomber.exceptions import DAGBuildEarlyStop
>>> # A PythonCallable function that raises DAGBuildEarlyStop
>>> def early_stop_root(product):
... raise DAGBuildEarlyStop('Ending gracefully')

>>> # Since DAGBuildEarlyStop is raised, DAG will exit gracefully.
>>> dag = DAG(executor='parallel')
>>> t = PythonCallable(early_stop_root, File('file.txt'), dag=dag)
>>> dag.build()

DAG can also exit gracefully on notebook tasks:

>>> from pathlib import Path
>>> from ploomber.tasks import NotebookRunner
>>> from ploomber.products import File
>>> def early_stop():
... raise DAGBuildEarlyStop('Ending gracefully')

>>> # Use task-level hook "on_finish" to exit DAG gracefully.
>>> dag = DAG(executor='parallel')
>>> t = NotebookRunner(Path('nb.ipynb'), File('report.html'), dag=dag)
>>> t.on_finish = early_stop
>>> dag.build()

See also:

ploomber.executors.Parallel Parallel executor

232 Chapter 2. Index

ploomber, Release 0.23.1

Methods

ploomber.executors.Parallel

class ploomber.executors.Parallel(processes=None, print_progress=False, start_method=None)
Runs a DAG in parallel using multiprocessing

Parameters
• processes (int, default=None) – The number of processes to use. If None, uses os.
cpu_count

• print_progress (bool, default=False) – Whether to print progress to stdout, other-
wise just log it

• start_method (str, default=None) – The method which should be used to start child
processes. method can be ‘fork’, ‘spawn’ or ‘forkserver’. If None or empty then the default
start_method is used.

Examples

Spec API:

add at the top of your pipeline.yaml
executor: parallel

tasks:
- source: script.py
nb_product_key: [nb_ipynb, nb_html]
product:

nb_ipynb: nb.ipynb
nb_html: report.html

Python API:

>>> from ploomber import DAG
>>> from ploomber.executors import Parallel
>>> dag = DAG(executor='parallel') # use with default values
>>> dag = DAG(executor=Parallel(processes=2)) # customize

DAG can exit gracefully on function tasks (PythonCallable):

>>> from ploomber.products import File
>>> from ploomber.tasks import PythonCallable
>>> from ploomber.exceptions import DAGBuildEarlyStop
>>> # A PythonCallable function that raises DAGBuildEarlyStop
>>> def early_stop_root(product):
... raise DAGBuildEarlyStop('Ending gracefully')

>>> # Since DAGBuildEarlyStop is raised, DAG will exit gracefully.
>>> dag = DAG(executor='parallel')

(continues on next page)

2.6. API Reference 233

ploomber, Release 0.23.1

(continued from previous page)

>>> t = PythonCallable(early_stop_root, File('file.txt'), dag=dag)
>>> dag.build()

DAG can also exit gracefully on notebook tasks:

>>> from pathlib import Path
>>> from ploomber.tasks import NotebookRunner
>>> from ploomber.products import File
>>> def early_stop():
... raise DAGBuildEarlyStop('Ending gracefully')

>>> # Use task-level hook "on_finish" to exit DAG gracefully.
>>> dag = DAG(executor='parallel')
>>> t = NotebookRunner(Path('nb.ipynb'), File('report.html'), dag=dag)
>>> t.on_finish = early_stop
>>> dag.build()

Notes

If any task crashes, downstream tasks execution is aborted, building continues until no more tasks can be executed

New in version 0.20: Added start_method argument

See also:

ploomber.executors.Serial Serial executor

Methods

Attributes

multiprocessing_start_methods

SourceLoader

SourceLoader([path, module]) Load source files using a jinja2.Environment

234 Chapter 2. Index

ploomber, Release 0.23.1

ploomber.SourceLoader

class ploomber.SourceLoader(path=None, module=None)
Load source files using a jinja2.Environment

Data pipelines usually rely on non-Python source code such as SQL scripts, SourceLoader provides a convenient
way of loading them. This serves two purposes: 1) Avoid hardcoded paths to files and 2) Allows using advanced
jinja2 features that require an Environment object such as macros (under the hood, SourceLoader initializes an
Environment with a FileSystemLoader) SourceLoader returns ploomber.Placeholder objects that can be directly
passed to Tasks in the source parameter

Parameters
• path (str, pathlib.Path, optional) – Path (or list of) to load files from. Required if

module is None

• module (str or module, optional) – Module name as dotted string or module object.
Preprends to path parameter

Examples

>>> from ploomber import SourceLoader
>>> loader = SourceLoader('path/to/templates/')
>>> loader['load_customers.sql']
>>> loader.get_template('load_customers.sql')

Methods

get(key) Load template, returns None if it doesn’ exist
get_template(name) Load a template by name
path_to(key) Return the path to a template, even if it doesn’t exist

get(key)
Load template, returns None if it doesn’ exist

get_template(name)
Load a template by name

Parameters name (str or pathlib.Path) – Template to load

path_to(key)
Return the path to a template, even if it doesn’t exist

2.6. API Reference 235

ploomber, Release 0.23.1

2.6.4 Testing utilities

SQL

nulls_in_columns(client, cols, product) Check if any column has NULL values, returns bool
distinct_values_in_column(client, col, product) Get distinct values in a column
duplicates_in_column(client, col, product) Check if a column (or group of columns) has duplicated

values
range_in_column(client, col, product) Get range for a column
exists_row_where(client, criteria, product) Check whether at least one row exists matching the cri-

teria

ploomber.testing.sql.nulls_in_columns

ploomber.testing.sql.nulls_in_columns(client, cols: Union[str, List[str]], product)
Check if any column has NULL values, returns bool

Parameters
• client – Database client

• cols – Column(s) to check

• product – The relation to check

Returns True if there is at least one NULL in any of the columns

Return type bool

ploomber.testing.sql.distinct_values_in_column

ploomber.testing.sql.distinct_values_in_column(client, col: str, product)
Get distinct values in a column

Parameters
• client – Database client

• col – Column to check

• product – The relation to check

Returns Distinct values in column

Return type set

ploomber.testing.sql.duplicates_in_column

ploomber.testing.sql.duplicates_in_column(client, col: Union[str, List[str]], product)→ bool
Check if a column (or group of columns) has duplicated values

Parameters
• client – Database client

• cols – Column(s) to check

236 Chapter 2. Index

ploomber, Release 0.23.1

• product – The relation to check

Returns True if there are duplicates in the column(s). If passed more than one column, they are
considered as a whole, not individually

Return type bool

ploomber.testing.sql.range_in_column

ploomber.testing.sql.range_in_column(client, col: str, product)
Get range for a column

Parameters
• client – Database client

• cols – Column to check

• product – The relation to check

Returns (minimum, maximum) values

Return type tuple

ploomber.testing.sql.exists_row_where

ploomber.testing.sql.exists_row_where(client, criteria: str, product)
Check whether at least one row exists matching the criteria

Parameters
• client – Database client

• criteria – Criteria to evaluate (passed as argument to a WHERE clause)

• product – The relation to check

Notes

Runs a SELECT EXISTS (SELECT * FROM {{product}} WHERE {{criteria}}) query

Returns True if exists at least one row matching the criteria

Return type bool

2.7 Related projects

Check out other amazing projects brought to you by the Ploomber team!

• sklearn-evaluation Plots for evaluating ML models, experiment tracking, and more!

• ploomber-engine: A toolbox for executing, testing, debugging, and profiling Jupyter notebooks

• JupySQL: Query SQL databases from jupyter with a %sql magic: result = %sql SELECT * FROM table

2.7. Related projects 237

https://ploomber.io/
https://github.com/ploomber/sklearn-evaluation)
https://github.com/ploomber/ploomber-engine
https://github.com/ploomber/jupysql

ploomber, Release 0.23.1

2.8 Community

2.8.1 Contact Us

Do you have any questions or feedback? Reach out to us:

• E-mail us at contact@ploomber.io.

• Send us a message on Slack.

• Open an issue on GitHub.

Stay up-to-date

• Follow us on Twitter.

• Subscribe to our newsletter.

• Subscribe to our YouTube channel.

2.8.2 Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste,
color, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open,
welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our community includes:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or e-mail address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

238 Chapter 2. Index

mailto:contact@ploomber.io
https://ploomber.io/community
https://github.com/ploomber/ploomber/issues/new
https://twitter.com/intent/user?screen_name=ploomber
https://share.hsforms.com/1E7Qa_OpcRPi_MV-segFsaAe6c2g
https://www.youtube.com/channel/UCaIS5BMlmeNQE4-Gn0xTDXQ

ploomber, Release 0.23.1

Slack Guidelines

• Use the #ask-anything channel to post questions.

• When using the #ask-anything channel, provide sufficient detail for the community to provide an answer

• If you have a private question, you can send a private message to the community leaders (Eduardo and Ido) but
bear in mind that it may take some time to get an answer.

• Do not solicit community members about your product, project, or service (even if open-source or free)

• Do not demand attention from community members by sending private messages or using @here, or @channel.

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at conduct@ploomber.io. All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, clarifying the nature of the violation and explaining
why the behavior was inappropriate. A public apology may be requested.

1. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period. This includes avoiding
interactions in community spaces as well as external channels like social media. Violating these terms may lead to a
temporary or permanent ban.

2.8. Community 239

mailto:conduct@ploomber.io

ploomber, Release 0.23.1

3. Temporary Ban

Community Impact: A severe violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any interaction or public communication with the community for a specified
period. No public or private interaction with the people involved, including unsolicited interaction with those enforcing
the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any public interaction within the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available here.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ here. Translations are available here.

2.8.3 API Changes

We follow semantic versioning, which means we won’t introduce API incompatible changes in minor versions
(e.g., from 0.15.x to 0.15.y). Major versions introduce API incompatible changes (e.g., from 0.x to 0.y), however,
Ploomber’s API has been stable for over a year now, and API incompatible changes have only required minor code
updates.

Deprecation policy

Whenever we introduce an API incompatible change, we add a FutureWarning and keep it for two minor releases
before rolling out the major release.

Changelog

We keep a detailed log of changes in our CHANGELOG on GitHub.

2.8.4 Contributing

Thanks for considering contributing to Ploomber! There are many ways to do so. From fixing bugs or adding features
to the core framework, improving this documentation or contributing to the examples repository.

Click on the appropriate link in the list below to learn more.

1. Core framework.

2. This documentation.

3. Examples repository.

If you have any questions, open an issue or send us a message on Slack.

240 Chapter 2. Index

https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations
https://semver.org/
https://github.com/ploomber/ploomber/blob/master/CHANGELOG.md
https://github.com/ploomber/ploomber
https://github.com/ploomber/projects/blob/master/CONTRIBUTING.md
https://github.com/ploomber/ploomber/blob/master/CONTRIBUTING.md
https://github.com/ploomber/ploomber/blob/master/doc/CONTRIBUTING.md
https://github.com/ploomber/projects/blob/master/CONTRIBUTING.md
https://github.com/ploomber/ploomber/issues/new?title=Contributing
https://ploomber.io/community

ploomber, Release 0.23.1

2.8.5 User Statistics

The data we collect is limited to:

• The Ploomber version currently running.

• A generated UUID, randomized when the initial install takes place, no personal or any identifiable information.

• Environment variables: The OS architecture Ploomber is used in (Python version etc.)

• Information about the different product phases: installation, API calls and errors.

• For users who explicitly stated their email, we collect an email address.

How to opt-out

As an open source project, we collect anonymous usage statistics to prioritize and find product gaps. This is optional
and may be turned off either by:

1. Modify the configuration file ~/.ploomber/stats/config.yaml:

• Change stats_enabled to false.

2. Set the environment variable:

export PLOOMBER_STATS_ENABLED=false

Version updates

If there’s an outdated version, ploomber will alert it through the console every second day in a non-invasive way. You
can stop this checks for instance if you’re running in production and you’ve locked versions. The check can be turned
off either by:

1. Modify the configuration file ~/.ploomber/stats/config.yaml:

• Change version_check_enabled to false.

2. Set the environment variable:

export PLOOMBER_VERSION_CHECK_DISABLED=false

2.8.6 Roadmap

These are some of the features we have in the pipeline, sorted by priority. Please help us prioritize this list; go to the
related GitHub issue and comment on it.

1. Grid improvements (#522, #647)

2. Plot color changes (#650)

3. Better tracking of execution products (notebooks, models and artifacts).

4. Improve documentation of git collaboration {{git}} (#615).

2.8. Community 241

https://github.com/ploomber/ploomber/issues/615

ploomber, Release 0.23.1

Done

1. Better support for non-Jupyter editors like VSCode or PyCharm (available in 0.14). User guide.

2. Export Ploomber pipelines to Slurm. (Note: this will be implemented in Soopervisor). (This is now in beta)

3. CLI automatic suggestions on typos (#618)

4. Scheduling via cron jobs (#422)

5. Pipeline Monitoring (#583)

6. Google Colab integration, documentation and a sample first-pipeline.

7. Managed AWS Batch deployment through github actions CI.

To send general feedback, open an issue or send us a message on Slack.

Ideas

These are some ideas we have that we haven’t prioritized yet.

• Deploying your model as an endpoint.

• Artifacts reproducibility.

• Integration with Databricks.

• Integration with Great Expectations.

• Integration with Streamlit.

• Automated pipeline testing.

• Integration with data versioning tools such as LakeFS. (#414)

• Expand integration with Google Cloud (we only support uploading to Cloud Storage).

• Expand integration with AWS (we only support S3 and AWS Batch).

• Integration with Azure Machine Learning services.

• Support for Julia.

To send general feedback, open an issue or send us a message on Slack.

242 Chapter 2. Index

https://github.com/ploomber/soopervisor
https://soopervisor.readthedocs.io/en/latest/tutorials/slurm.html
https://github.com/ploomber/ploomber/issues/618
https://github.com/ploomber/ploomber/issues/422
https://github.com/ploomber/ploomber/issues/583
https://github.com/ploomber/ploomber/issues/new?title=Roadmap
https://ploomber.io/community
https://github.com/ploomber/ploomber/issues/414
https://github.com/ploomber/ploomber/issues/new?title=Roadmap
https://ploomber.io/community

INDEX

B
build() (ploomber.DAG method), 152
build() (ploomber.InMemoryDAG method), 162
build() (ploomber.tasks.DownloadFromURL method),

196
build() (ploomber.tasks.Input method), 201
build() (ploomber.tasks.Link method), 198
build() (ploomber.tasks.NotebookRunner method), 173
build() (ploomber.tasks.PostgresCopyFrom method),

191
build() (ploomber.tasks.PythonCallable method), 168
build() (ploomber.tasks.ScriptRunner method), 176
build() (ploomber.tasks.ShellScript method), 194
build() (ploomber.tasks.SQLDump method), 183
build() (ploomber.tasks.SQLScript method), 180
build() (ploomber.tasks.SQLTransfer method), 186
build() (ploomber.tasks.SQLUpload method), 189
build() (ploomber.tasks.Task method), 164
build_partially() (ploomber.DAG method), 152

C
check_tasks_have_allowed_status()

(ploomber.DAG method), 153
clear() (ploomber.spec.DAGSpec method), 226
Client (class in ploomber.clients), 212
clients (ploomber.DAG attribute), 150
close() (ploomber.clients.Client method), 213
close() (ploomber.clients.DBAPIClient method), 215
close() (ploomber.clients.GCloudStorageClient

method), 224
close() (ploomber.clients.S3Client method), 221
close() (ploomber.clients.ShellClient method), 218
close() (ploomber.clients.SQLAlchemyClient method),

218
close_clients() (ploomber.DAG method), 153
create() (ploomber.DAGConfigurator method), 156
cursor() (ploomber.clients.DBAPIClient method), 215
cursor() (ploomber.clients.SQLAlchemyClient method),

218

D
DAG (class in ploomber), 150

DAGConfigurator (class in ploomber), 156
DAGSpec (class in ploomber.spec), 224
DBAPIClient (class in ploomber.clients), 213
debug() (ploomber.tasks.DownloadFromURL method),

196
debug() (ploomber.tasks.Input method), 201
debug() (ploomber.tasks.Link method), 199
debug() (ploomber.tasks.NotebookRunner method), 173
debug() (ploomber.tasks.PostgresCopyFrom method),

191
debug() (ploomber.tasks.PythonCallable method), 168
debug() (ploomber.tasks.ScriptRunner method), 177
debug() (ploomber.tasks.ShellScript method), 194
debug() (ploomber.tasks.SQLDump method), 184
debug() (ploomber.tasks.SQLScript method), 180
debug() (ploomber.tasks.SQLTransfer method), 186
debug() (ploomber.tasks.SQLUpload method), 189
debug() (ploomber.tasks.Task method), 164
delete() (ploomber.products.File method), 204
delete() (ploomber.products.GenericProduct method),

211
delete() (ploomber.products.GenericSQLRelation

method), 210
delete() (ploomber.products.PostgresRelation method),

207
delete() (ploomber.products.Product method), 203
delete() (ploomber.products.SQLiteRelation method),

209
delete() (ploomber.products.SQLRelation method),

205
distinct_values_in_column() (in module

ploomber.testing.sql), 236
download() (ploomber.clients.GCloudStorageClient

method), 224
download() (ploomber.clients.S3Client method), 221
download() (ploomber.products.File method), 204
download() (ploomber.products.GenericProduct

method), 211
download() (ploomber.products.GenericSQLRelation

method), 210
download() (ploomber.products.PostgresRelation

method), 207

243

ploomber, Release 0.23.1

download() (ploomber.products.Product method), 203
download() (ploomber.products.SQLiteRelation

method), 209
download() (ploomber.products.SQLRelation method),

205
DownloadFromURL (class in ploomber.tasks), 196
duplicates_in_column() (in module

ploomber.testing.sql), 236

E
end() (ploomber.Env class method), 229
Env (class in ploomber), 228
execute() (ploomber.clients.Client method), 213
execute() (ploomber.clients.DBAPIClient method), 215
execute() (ploomber.clients.ShellClient method), 218
execute() (ploomber.clients.SQLAlchemyClient

method), 218
executor (ploomber.DAG attribute), 150
exists() (ploomber.products.File method), 204
exists() (ploomber.products.GenericProduct method),

211
exists() (ploomber.products.GenericSQLRelation

method), 210
exists() (ploomber.products.PostgresRelation method),

207
exists() (ploomber.products.Product method), 203
exists() (ploomber.products.SQLiteRelation method),

209
exists() (ploomber.products.SQLRelation method),

206
exists_row_where() (in module ploomber.testing.sql),

237

F
fetch_metadata() (ploomber.products.File method),

204
fetch_metadata() (ploomber.products.GenericProduct

method), 211
fetch_metadata() (ploomber.products.GenericSQLRelation

method), 210
fetch_metadata() (ploomber.products.PostgresRelation

method), 207
fetch_metadata() (ploomber.products.Product

method), 203
fetch_metadata() (ploomber.products.SQLiteRelation

method), 209
fetch_metadata() (ploomber.products.SQLRelation

method), 206
File (class in ploomber.products), 204
find() (ploomber.spec.DAGSpec class method), 226
from_directory() (ploomber.spec.DAGSpec class

method), 226
from_files() (ploomber.spec.DAGSpec class method),

227

G
GCloudStorageClient (class in ploomber.clients), 221
GenericProduct (class in ploomber.products), 211
GenericSQLRelation (class in ploomber.products), 209
get() (ploomber.DAG method), 153
get() (ploomber.SourceLoader method), 235
get() (ploomber.spec.DAGSpec method), 227
get_downstream() (ploomber.DAG method), 153
get_partial() (ploomber.OnlineDAG static method),

155
get_partial() (ploomber.OnlineModel method), 155
get_template() (ploomber.SourceLoader method), 235

I
init_dag_from_partial() (ploomber.OnlineDAG

class method), 155
init_dag_from_partial() (ploomber.OnlineModel

class method), 155
InMemoryDAG (class in ploomber), 157
Input (class in ploomber.tasks), 200
items() (ploomber.DAG method), 153
items() (ploomber.spec.DAGSpec method), 227

K
keys() (ploomber.DAG method), 153
keys() (ploomber.spec.DAGSpec method), 227

L
Link (class in ploomber.tasks), 198
load() (ploomber.Env class method), 229
load() (ploomber.tasks.DownloadFromURL method),

196
load() (ploomber.tasks.Input method), 201
load() (ploomber.tasks.Link method), 199
load() (ploomber.tasks.NotebookRunner method), 174
load() (ploomber.tasks.PostgresCopyFrom method), 191
load() (ploomber.tasks.PythonCallable method), 168
load() (ploomber.tasks.ScriptRunner method), 177
load() (ploomber.tasks.ShellScript method), 194
load() (ploomber.tasks.SQLDump method), 184
load() (ploomber.tasks.SQLScript method), 180
load() (ploomber.tasks.SQLTransfer method), 186
load() (ploomber.tasks.SQLUpload method), 189
load() (ploomber.tasks.Task method), 164
load_env() (in module ploomber), 228

N
name (ploomber.DAG attribute), 150
NotebookRunner (class in ploomber.tasks), 170
nulls_in_columns() (in module ploomber.testing.sql),

236

O
on_failure (ploomber.DAG attribute), 150

244 Index

ploomber, Release 0.23.1

on_failure (ploomber.tasks.Task attribute), 163
on_finish (ploomber.DAG attribute), 150
on_finish (ploomber.tasks.Task attribute), 163
on_render (ploomber.DAG attribute), 150
on_render (ploomber.tasks.Task attribute), 163
OnlineDAG (class in ploomber), 155
OnlineModel (class in ploomber), 154

P
Parallel (class in ploomber.executors), 233
params (ploomber.tasks.Task attribute), 163
path (ploomber.spec.DAGSpec attribute), 225
path_to() (ploomber.SourceLoader method), 235
plot() (ploomber.DAG method), 153
pop() (ploomber.DAG method), 153
pop() (ploomber.spec.DAGSpec method), 227
popitem() (ploomber.spec.DAGSpec method), 227
PostgresCopyFrom (class in ploomber.tasks), 191
PostgresRelation (class in ploomber.products), 206
predict() (ploomber.OnlineDAG method), 155
predict() (ploomber.OnlineModel method), 155
prepare_metadata (ploomber.products.Product at-

tribute), 203
Product (class in ploomber.products), 203
PythonCallable (class in ploomber.tasks), 166

R
range_in_column() (in module ploomber.testing.sql),

237
render() (ploomber.DAG method), 153
render() (ploomber.products.File method), 205
render() (ploomber.products.GenericProduct method),

211
render() (ploomber.products.GenericSQLRelation

method), 210
render() (ploomber.products.PostgresRelation method),

207
render() (ploomber.products.Product method), 203
render() (ploomber.products.SQLiteRelation method),

209
render() (ploomber.products.SQLRelation method),

206
render() (ploomber.tasks.DownloadFromURL method),

196
render() (ploomber.tasks.Input method), 201
render() (ploomber.tasks.Link method), 199
render() (ploomber.tasks.NotebookRunner method),

174
render() (ploomber.tasks.PostgresCopyFrom method),

192
render() (ploomber.tasks.PythonCallable method), 168
render() (ploomber.tasks.ScriptRunner method), 177
render() (ploomber.tasks.ShellScript method), 194
render() (ploomber.tasks.SQLDump method), 184

render() (ploomber.tasks.SQLScript method), 180
render() (ploomber.tasks.SQLTransfer method), 186
render() (ploomber.tasks.SQLUpload method), 189
render() (ploomber.tasks.Task method), 164
run() (ploomber.tasks.DownloadFromURL method), 197
run() (ploomber.tasks.Input method), 202
run() (ploomber.tasks.Link method), 199
run() (ploomber.tasks.NotebookRunner method), 174
run() (ploomber.tasks.PostgresCopyFrom method), 192
run() (ploomber.tasks.PythonCallable method), 169
run() (ploomber.tasks.ScriptRunner method), 177
run() (ploomber.tasks.ShellScript method), 195
run() (ploomber.tasks.SQLDump method), 184
run() (ploomber.tasks.SQLScript method), 181
run() (ploomber.tasks.SQLTransfer method), 187
run() (ploomber.tasks.SQLUpload method), 190
run() (ploomber.tasks.Task method), 165

S
S3Client (class in ploomber.clients), 219
save_metadata() (ploomber.products.File method),

205
save_metadata() (ploomber.products.GenericProduct

method), 212
save_metadata() (ploomber.products.GenericSQLRelation

method), 210
save_metadata() (ploomber.products.PostgresRelation

method), 207
save_metadata() (ploomber.products.Product

method), 204
save_metadata() (ploomber.products.SQLiteRelation

method), 209
save_metadata() (ploomber.products.SQLRelation

method), 206
ScriptRunner (class in ploomber.tasks), 175
Serial (class in ploomber.executors), 231
serializer (ploomber.DAG attribute), 150
serializer() (in module ploomber.io), 230
serializer_pickle() (in module ploomber.io), 230
set_upstream() (ploomber.tasks.DownloadFromURL

method), 197
set_upstream() (ploomber.tasks.Input method), 202
set_upstream() (ploomber.tasks.Link method), 199
set_upstream() (ploomber.tasks.NotebookRunner

method), 174
set_upstream() (ploomber.tasks.PostgresCopyFrom

method), 192
set_upstream() (ploomber.tasks.PythonCallable

method), 169
set_upstream() (ploomber.tasks.ScriptRunner

method), 177
set_upstream() (ploomber.tasks.ShellScript method),

195

Index 245

ploomber, Release 0.23.1

set_upstream() (ploomber.tasks.SQLDump method),
184

set_upstream() (ploomber.tasks.SQLScript method),
181

set_upstream() (ploomber.tasks.SQLTransfer method),
187

set_upstream() (ploomber.tasks.SQLUpload method),
190

set_upstream() (ploomber.tasks.Task method), 165
setdefault() (ploomber.spec.DAGSpec method), 227
ShellClient (class in ploomber.clients), 218
ShellScript (class in ploomber.tasks), 193
SourceLoader (class in ploomber), 235
SQLAlchemyClient (class in ploomber.clients), 215
SQLDump (class in ploomber.tasks), 182
SQLiteRelation (class in ploomber.products), 208
SQLRelation (class in ploomber.products), 205
SQLScript (class in ploomber.tasks), 178
SQLTransfer (class in ploomber.tasks), 185
SQLUpload (class in ploomber.tasks), 188
status() (ploomber.DAG method), 153
status() (ploomber.tasks.DownloadFromURL method),

197
status() (ploomber.tasks.Input method), 202
status() (ploomber.tasks.Link method), 199
status() (ploomber.tasks.NotebookRunner method),

174
status() (ploomber.tasks.PostgresCopyFrom method),

192
status() (ploomber.tasks.PythonCallable method), 169
status() (ploomber.tasks.ScriptRunner method), 177
status() (ploomber.tasks.ShellScript method), 195
status() (ploomber.tasks.SQLDump method), 184
status() (ploomber.tasks.SQLScript method), 181
status() (ploomber.tasks.SQLTransfer method), 187
status() (ploomber.tasks.SQLUpload method), 190
status() (ploomber.tasks.Task method), 165

T
Task (class in ploomber.tasks), 163
terminal_params() (ploomber.OnlineDAG static

method), 155
terminal_params() (ploomber.OnlineModel method),

155
terminal_task() (ploomber.OnlineDAG static

method), 156
terminal_task() (ploomber.OnlineModel static

method), 155
to_dag() (ploomber.spec.DAGSpec method), 227
to_json_serializable() (ploomber.products.File

method), 205
to_json_serializable()

(ploomber.products.GenericProduct method),
212

to_json_serializable()
(ploomber.products.GenericSQLRelation
method), 210

to_json_serializable()
(ploomber.products.PostgresRelation method),
207

to_json_serializable() (ploomber.products.Product
method), 204

to_json_serializable()
(ploomber.products.SQLiteRelation method),
209

to_json_serializable()
(ploomber.products.SQLRelation method),
206

to_markup() (ploomber.DAG method), 154

U
unserializer (ploomber.DAG attribute), 150
unserializer() (in module ploomber.io), 230
unserializer_pickle() (in module ploomber.io), 231
update() (ploomber.spec.DAGSpec method), 227
upload() (ploomber.clients.GCloudStorageClient

method), 224
upload() (ploomber.clients.S3Client method), 221
upload() (ploomber.products.File method), 205
upload() (ploomber.products.GenericProduct method),

212
upload() (ploomber.products.GenericSQLRelation

method), 210
upload() (ploomber.products.PostgresRelation method),

207
upload() (ploomber.products.Product method), 204
upload() (ploomber.products.SQLiteRelation method),

209
upload() (ploomber.products.SQLRelation method),

206

V
values() (ploomber.DAG method), 154
values() (ploomber.spec.DAGSpec method), 227

W
with_env() (in module ploomber), 228

246 Index

	Sections
	Index
	Get Started
	What is Ploomber?
	Tell me more
	I have questions
	I’m ready to start building!

	Quickstart
	pip
	conda
	What’s next?

	Your first Python pipeline
	Introduction
	Pipeline declaration
	Opening .py files as notebooks
	What sets the execution order?

	Plotting the pipeline
	Running the pipeline
	Updating the pipeline
	Where to go from here

	Basic concepts
	A simple pipeline
	Defining a pipeline
	Tasks: scripts/notebooks
	upstream and product
	The cell injection process

	Tasks: functions
	upstream and product

	Tasks: SQL
	upstream and product
	Clients

	Where to go from here

	Intro to Ploomber
	Your first Python pipeline
	Ploomber Tutorial Intro
	We’ll see today how you can improve your work:

	Parallelization
	Parameterize workflows
	Caching optimization

	Automated reports
	Interactive reporting

	Where to go from here
	Use cases
	Community support
	Resources

	Use Cases
	Machine Learning
	Data cleaning and feature engineering
	Experiment tracking
	Parallel experiments
	Large-scale model training
	Deployment

	Research Projects
	Faster iterations
	Run (and organize) more experiments
	Ensure reproducibility
	Share your analysis

	Analytics
	Modularize your project
	Faster iterations
	Automated report generation

	SQL Pipelines
	Process with SQL and Python
	Uploading batch predictions to a database
	ETL

	User Guide
	Downloading templates
	Selected templates
	Downloading a template
	Listing all templates
	Templates structure
	Starting projects from scratch

	Command-line interface
	Entry points
	Basic commands
	Interactive sessions
	Other commands
	Enabling Completion

	Jupyter integration
	Interactive development
	The upstream variable
	Choosing the source format
	Light format
	Percent format

	Activating the Jupyter extension
	Custom Jupyter pipeline loading
	Troubleshooting pipeline loading
	Detecting changes
	Managing multiple pipelines
	Exploratory Data Analysis
	Opening .py files as notebooks with a single click

	Scaffolding projects
	Scaffolding tasks
	Packaging projects
	Managing development and production dependencies
	Locking dependencies

	Refactoring legacy notebooks
	Resources

	Parametrized pipelines
	Spec API (pipeline.yaml)
	Notes

	Python API (factory functions)

	Configuration (dev/prod)
	Managing multiple pipelines
	env.yaml composition (DRY)

	SQL Pipelines
	Quick Start
	Creating Sample Data
	Connecting To Databases
	Configuring The Task Client In pipeline.yaml
	Creating SQL Tables/Views With SQLScript
	SQLScript And Product’s Metadata
	Placeholders In SQL Scripts
	Dumping Data With SQLDump
	Other SQL Tasks
	Where To Go From Here

	SQL templating
	Basic templating
	Control structures
	Macros
	Configuring support for macros

	Printing rendered code
	Where to go next

	File clients
	Pre-requisites
	Create a clients file
	Configure the pipeline
	Working with external datasets

	Pipeline testing
	Sample data
	Testing Python scripts
	Testing SQL scripts
	Running the pipeline
	Test-driven development (TDD)
	Pro tip: debugging and developing tests interactively
	Where to go next

	Debugging
	Debugger basics
	Understanding error messages
	Starting a debugging session
	Jump to the first line and start the debugger
	(post-mortem) Let the task run and start the debugger as soon as it fails
	(breakpoint) Jump to a specific line and start the debugger
	Using the CLI to check if we fixed the bug
	Letting our pipeline fail under unforeseen circumstances
	Debugging (templated) SQL scripts
	Where to go next

	Versioning
	Using {{git}}
	Using {{git_hash}}
	Adding the current timestamp with {{now}}
	Using placeholders in selected tasks
	Using an env.yaml

	Logging
	Sample pipeline
	Why not print?
	Logging to a file
	Logging to a file from Python
	Controlling logging level
	Implementation details
	Function tasks and sub-processes
	Scripts and notebooks
	Parallel execution

	Serialization
	Built-in pickle serialization
	Custom serialization logic
	Custom serialization logic based on the product’s extension
	Using a fallback format
	Using default serializers
	Wrapping up

	Shell tasks
	Executing source code in other programming languages

	Other editors (VSCode, PyCharm, etc.)
	Using the percent format
	Pairing .ipynb files
	Using .ipynb as sources
	Removing the injected cell
	Using git hooks

	R support
	Configuring R environment
	Setting up R and IRkernel via conda
	Interactive example

	FAQ and Glossary
	Why do products have clients?
	Which databases are supported?
	What are incremental builds?
	How do I specify a task with a variable number of outputs?
	Should tasks generate products?
	Auto reloading code in Jupyter
	Cell tags
	Parameterizing Notebooks
	Parameterizing .py files
	Parameterizing .ipynb files in Jupyter

	Plotting a pipeline
	conda (simplest)
	pip

	Can I use Ploomber in old JupyterLab 1.x versions?
	Multiprocessing errors on macOS and Windows
	Solution 1: Add __name__ == '__main__'
	Solution 2: Disable multiprocessing

	Glossary

	Spec API vs. Python API
	Entry points
	Directory entry point
	[Spec API] Spec entry point
	[Python API] Factory entry point

	Deployment
	Introduction
	Pipeline composition

	Batch processing
	Composing batch pipelines
	Scheduling

	Online service (API)
	Composing online pipelines
	Examples

	Large-scale training
	Custom deployment

	Cookbook
	Parametrization
	Switching from the command line
	Dynamic parameters

	Report generation
	HTML reports (easiest option)
	PDF reports
	Using chromium (easiest pdf option)
	Using TeX
	Installing TeX

	Hiding code
	Hiding cells

	Debugging
	Executing task in debugging mode
	Post-mortem debugging
	Post-mortem debugging (debug later)
	Breakpoints
	Debugging in Jupyter/VSCode
	Post-portem
	Breakpoints
	Visual debugger

	Logging
	Function tasks
	Scripts or notebooks

	Serialization
	Resources

	Database configuration
	Using SQLAlchemyClient
	Using Snowflake

	Using DBAPIClient
	Configuring the client in pipeline.yaml
	Examples

	Task grids
	Notebook Executors
	Papermill(default)
	Ploomber-Engine

	Custom pipeline loading logic
	Hooks (e.g., on_finish)
	Tip: Developing hooks interactively
	Resources
	DAG-level hooks

	API Reference
	Spec API (pipeline.yaml)
	meta
	meta.source_loader
	meta.import_tasks_from
	meta.extract_upstream
	meta.extract_product
	meta.product_default_class
	executor
	clients
	on_{render, finish, failure}
	serializer and unserializer
	source_loader
	SQLScript product class
	Loading from a factory

	task
	tasks[*].name
	tasks[*].source
	tasks[*].product
	tasks[*].params
	tasks[*].on_{render, finish, failure}
	tasks[*].params.resources_
	tasks[*].grid
	tasks[*].client
	tasks[*].product_client
	tasks[*].upstream
	tasks[*].class
	tasks[*].product_class

	Parametrizing with env.yaml
	Re-using values in env.yaml
	Setting parameters from the CLI
	Default placeholders

	Command line interface
	Build pipeline
	Build pipeline (forced)
	Build pipeline partially
	Plot
	Status
	Report
	Build a single task
	Get task status
	Task source code
	Create new project
	install
	nb
	Interactive sessions
	Examples
	Default locations

	Python API
	DAG
	ploomber.DAG
	ploomber.OnlineModel
	ploomber.OnlineDAG
	ploomber.DAGConfigurator
	ploomber.InMemoryDAG

	Tasks
	ploomber.tasks.Task
	ploomber.tasks.PythonCallable
	ploomber.tasks.NotebookRunner
	ploomber.tasks.ScriptRunner
	ploomber.tasks.SQLScript
	ploomber.tasks.SQLDump
	ploomber.tasks.SQLTransfer
	ploomber.tasks.SQLUpload
	ploomber.tasks.PostgresCopyFrom
	ploomber.tasks.ShellScript
	ploomber.tasks.DownloadFromURL
	ploomber.tasks.Link
	ploomber.tasks.Input

	Products
	ploomber.products.Product
	ploomber.products.File
	ploomber.products.SQLRelation
	ploomber.products.PostgresRelation
	ploomber.products.SQLiteRelation
	ploomber.products.GenericSQLRelation
	ploomber.products.GenericProduct

	Clients
	ploomber.clients.Client
	ploomber.clients.DBAPIClient
	ploomber.clients.SQLAlchemyClient
	ploomber.clients.ShellClient
	ploomber.clients.S3Client
	ploomber.clients.GCloudStorageClient

	Spec
	ploomber.spec.DAGSpec

	Env
	ploomber.with_env
	ploomber.load_env
	ploomber.Env

	Serialization
	ploomber.io.serializer
	ploomber.io.serializer_pickle
	ploomber.io.unserializer
	ploomber.io.unserializer_pickle

	Executors
	ploomber.executors.Serial
	ploomber.executors.Parallel

	SourceLoader
	ploomber.SourceLoader

	Testing utilities
	SQL
	ploomber.testing.sql.nulls_in_columns
	ploomber.testing.sql.distinct_values_in_column
	ploomber.testing.sql.duplicates_in_column
	ploomber.testing.sql.range_in_column
	ploomber.testing.sql.exists_row_where

	Related projects
	Community
	Contact Us
	Stay up-to-date

	Code of Conduct
	Our Pledge
	Our Standards
	Slack Guidelines
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	Attribution

	API Changes
	Deprecation policy
	Changelog

	Contributing
	User Statistics
	How to opt-out
	Version updates

	Roadmap
	Done
	Ideas

	Index

